Skip to main content
Log in

Geochemical evolution of tourmaline in the Darasun gold district, Transbaikal region, Russia: evidence from chemical and boron isotopic compositions

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Darasun gold district, Transbaikal region, eastern Russia comprises three deposits: Teremkyn, Talatui, and Darasun, where gold-bearing quartz veins are hosted in metagabbro and granitoids. Tourmaline is a common gangue mineral in these deposits and a useful indicator of fluid source. The tourmaline compositions are oxy-dravite–povondraite, dravite, and schorl. We report here in situ B-isotope analyses by secondary ion mass spectrometry (SIMS) on tourmaline from veins in metagabbro and K-rich granodiorite, as well as from a breccia pipe at the margin of granodiorite porphyry. The B-isotope composition of tourmalines from the Darasun gold district as a whole covers a very wide range from −15.7 to +11.2 ‰, with distinctive differences among the three deposits. The δ11B values in the Teremkyn tourmalines are the most diverse, from −15.7 to +2.5 ‰. Tourmaline core compositions yield an inferred δ11B value of the initial fluid of ca. −12 ‰, suggesting granitic rocks as the B source, whereas the heavier rims and late-stage grains reflect Rayleigh fractionation. The δ11B values of tourmaline from Talatuiare −5.2 to −0.9 ‰. Taking into account fluid inclusion temperatures from vein quartz (ca. 400 °C), the inferred δ11B value of fluid is heavy (−2.5 to +2.2 ‰) suggesting a B source from the host metagabbro. At the Darasun deposit, tourmaline from the breccia pipe is isotopically uniform (δ11 B −6 to −5 ‰) and suggested to have precipitated from a 10B-depleted, residual fluid derived from granitic rocks. The Darasun vein-hosted tourmalines I and II (δ11B from −4.4 to +1.5 ‰) may have crystallized from strongly fractionated residual granitic fluid although mixing with heavy boron from the metagabbro rocks probably occurred as well; the boron isotopic composition of tourmaline III (−11.2 ‰) is attributed to a less-fractionated fluid, possibly a recharge from the same source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baksheev IA, Prokof’ev VY, Yapaskurt VO, Vigasina MF, Zorina LD, Solov’ev VN (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. Can Mineral 49:263–276

    Article  Google Scholar 

  • Baksheev IA, Prokof’ev VY, Zaraisky GP, Chitalin AF, Yapaskurt VO, Nikolaev YN, Tikhomirov PL, Nagornaya EV, Rogacheva LI, Gorelikova NV, Kononov OV (2012) Tourmaline as a prospecting guide for the porphyry-style deposits. Eur J Mineral 24:957–979

    Article  Google Scholar 

  • Chernyshev IV, Prof'ev VY, Bortnikov NS, Chugaev AV, Gol'tsman YV, Lebedev VA, Larionova YO, Zorina LD (2014) Age of porphyry granodiorite and berezite of the Darasun goldfield, Eastern Transbaikal region, Russia. Geo Ore Dep 56:3–12

    Google Scholar 

  • Dutrow BL, Henry DJ (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids. Can Mineral 38:131–143

    Article  Google Scholar 

  • Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delany JS, Ferrguson K, Francis CA, Grew S, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman WP, McGuire A, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Reference minerals for microanalyses of light elements. Geostand Newslett 25:441–463

    Article  Google Scholar 

  • Gonfiantini R, Tonarini S, Gröning M, Adorni-Braccesi A, Al-Ammar AS, Astner M, Bächler S, Barnes RM, Basset RL, Cocherie A, Deyhle A, Dini A, Ferrara G, Gaillardet J, Grimm J, Guerrot C, Krähenbühl U, Layne L, Lemarchand D, Meixner A, Northington DJ, Pennisi M, Reitznerová E, Rodushkin I, Sugiura N, Surberg R, Tonn S, Wieddenbeck M, Wunderli S, Xiao Y-K, Zack T (2003) Intercomparison of boron isotope and concentration measurements. II. Evaluation of results. Geostand Newslett 27:41–57

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (2012) Tourmaline at diagenetic to low-grade metamorphic conditions: its petrologic applicability. Lithos 154:16–32

    Article  Google Scholar 

  • Henry DJ, Kirkland BL, Kirkland DW (1999) Sector-zoned tourmaline from the cap rock of a salt dome. Eur J Mineral 11:263–280

    Article  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer, Berlin-Heildelberg, 285 pp

    Google Scholar 

  • Jarozewich E (2002) Smithsonian microbeam standards. J Res Natl Inst Stand Technol 107:681–685

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1999) Boron isotope systematics of tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia, Canada. Chem Geol 158:131–144

    Article  Google Scholar 

  • Kazimirovsky ME, Plyusnin GS, Smirnov VN, Fefelov NN (1992) Geochemical features and isotopic age of the rocks from the core of the Darasun tectonomagmatic structure. Russ Geol Geophys 33:35–70 (in Russian)

    Google Scholar 

  • Kazimirovsky ME, Zorina LD, Kulikova ZI (1993) The evolution of Paleozoic ultramafic and mafic magmatism of the Darasun ore district. Otechestv Geol 9:54–60 (in Russian)

    Google Scholar 

  • Leeman WP, Tonarini S (2001) Boron isotopic analysis of proposed borosilicate mineral reference samples. Geostand Newslett 25:399–403

    Article  Google Scholar 

  • Liebscher A, Meixner A, Romer RL, Heinrich W (2005) Liquid-vapor fractionation of boron and boron isotopes: experimental calibration at 400 °C/23 MPa to 450 °C/42 MPa. Geochim Cosmochim Acta 69:5693–5704

    Article  Google Scholar 

  • Lyakhov YV (1975) Temperature zonation in the Darasun deposit. Geol Rudn Mestorozhd 17:28–36 (in Russian)

    Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elem 7:313–320

    Article  Google Scholar 

  • Marschall HR, Meyer C, Wunder B, Ludwig T, Heinrich W (2009) Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modeling. Contrib Mineral Petrol 158:675–681

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Pal DC, Trumbull R, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, India: implications for the source and evolution of the mineralizing fluid. Chem Geol 277:245–260

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Palmer MR, London D, Morgan GB, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature and pressure dependent isotopic system. Chem Geol (Isotope Geosci Sect) 101:123–130

    Article  Google Scholar 

  • Prokof’ev VYu, Zorina LD (1994) Evolution of fluids of the Darasun ore-magmatic system (eastern Transbaikal region). Doklady Akad Nauk 335:206–209 (in Russian)

  • Prokof’ev VY, Zorina LD, Baksheev IA, Plotinskaya OY, Kudryavtseva OE, Ishkov YM (2004) Minerals and formation conditions of ores of the Teremkin gold deposit (eastern Transbaikal region). Geol Ore Depos 46:332–352

    Google Scholar 

  • Prokof’ev VY, Zorina LD, Kovalenker VA, Akinfeev NN, Baksheev IA, Krasnov AN, Yurgenson GA, Trubkin NV (2007) Composition, formation conditions, and genesis of the Talatui gold deposit, the eastern Transbaikal region. Geol Ore Depos 49:31–68

    Article  Google Scholar 

  • Prokofiev VY, Garofalo PS, Bortnikov NS, Kovalenker VA, Zorina LD, Grichuk DV, Selektor SL (2010) Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia) Russia. Econ Geol 105:395–416

    Article  Google Scholar 

  • Prokofiev V, Baksheev I, Zorina L, Belyatsky B, Ustinov V, Krivitskaya N (2012) Tourmalinization at the Darasun goldfield, Eastern Transbaikalia: compositional, fluid inclusion and isotopic constraints. Geosci Front 3:59–71

    Article  Google Scholar 

  • Raith JG, Riemer N, Meisel ST (2004) Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia. Contrib Mineral Petrol 147:91–109

    Article  Google Scholar 

  • Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa. J African Earth Sci 21:153–167

    Google Scholar 

  • Rublev AG, Aleksandrov GV, Aleksandrova SV, Murina GA, Shergina YuP (1985) Geochronology of the Phanerozoic activation magmatism of the southeastern Transbaikal region. Soviet Geol 10:81–92 (in Russian)

  • Sakharova MS (1972) Stages of ore formation and zoning of the Darasun gold deposit. In: Ivensen YP (ed) Ore formation and its relation to magmatism. Nauka, Moscow, pp 213–222 (in Russian)

    Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In:Grew ES, Anovitz LM (eds) Boron:mineralogy, petrology andgeochemistry. RevMineral 33:559-644

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elem 7:321–326

    Article  Google Scholar 

  • Spiridonov AM, Zorina LD, Letuniov SP, Prokofiev VY (2010) The fluid regime of ore formation in the Balei gold-bearing ore-magmatic system (eastern Transbaikalia, Russia). Russ Geol Geophys 51:1102–1109

    Article  Google Scholar 

  • Spivack AJ, Berndt ME, Seyfried WE Jr (1990) Boron isotope fractionation during supercritical phase separation. Geochim Cosmochim Acta 54:2337–2339

    Article  Google Scholar 

  • Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits: textural, chemical, and isotopic relationships. Econ Geol 79:1703–1726

    Article  Google Scholar 

  • Timofeyevsky DA (1972) Geology and mineralogy of the Darasun gold area. Nedra, Moscow, 260 pp; (in Russian)

    Google Scholar 

  • Tonarini S, Pennisi M, Adorrni-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Gröning M (2003) Intercomparison of boron isotope and concentration measurements. I. Selection, preparation and homogeneity tests of the intercomparison materials. Geostand Newslett 27:21–39

  • Torres-Ruiz J, Pesquera A, Gil-Crespo PP, Velilla N (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain). Chem Geol 197:55–86

    Article  Google Scholar 

  • Trumbull RB, Krienitz M-S, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an Stype granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155:1–18

  • Trumbull RB, Slack JF, Krienitz M-S, Belkin HE, Wiedenbeck M (2011) Fluid sources and metallogenesis in the Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, U.S.A.: insights from major-element and boron isotopic compositions of tourmaline. Can Mineral 49:225–244

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Dutrow BL (2011) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elem 7:327–332

    Article  Google Scholar 

  • Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, de Araújo CEG, Torresi I (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high salinity ore fluids in iron oxide-copper-gold deposits, Carajás mineral province (Brazil). Geology 36:743–746

    Article  Google Scholar 

  • Yang K, Jang J-Y (2002) Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, southeastern Gyeongsang basin. J Petrol Soc Korea 11:259–270

    Google Scholar 

  • Zharikov VA, Rusinov VL, Marakushev AA, Zaraiskii GP, Omel'yanenko BI, Pertsev NN, Rass IT, Andreeva OV, Abramov SS, Podlesskii KV (1998) Metasomatism and metasomatic rocks. Nauchny Mir, Moscow, 492 pp; (in Russian)

    Google Scholar 

  • Zorin YA, Zorina LD, Spiridonov AM, Rutshtein IG (2001) Geodynamic setting of gold deposits in eastern and central Trans-Baikal (Chita region, Russia). Ore Geol Rev 17:215–232

    Article  Google Scholar 

  • Zorina LD (1993) Formation model of gold deposits in the tectonomagmatic central type structures. Russ Geol Geophys 34:77–83 (in Russian)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Researches (Project nos. 12-05-01083a, 13-05-12043-Ofi-m). Lidia Zorina is thanked for the tourmaline samples kindly provided at our disposal. We are grateful to John Slack, Darrell Henry, and journal editor Bernd Lehmann for constructive comments that led to improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Baksheev.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(XLS 74 kb)

Online resource 2

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksheev, I.A., Prokofiev, V.Y., Trumbull, R.B. et al. Geochemical evolution of tourmaline in the Darasun gold district, Transbaikal region, Russia: evidence from chemical and boron isotopic compositions. Miner Deposita 50, 125–138 (2015). https://doi.org/10.1007/s00126-014-0526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0526-3

Keywords

Navigation