Skip to main content
Log in

Multi-stage hydrothermal processes involved in “low-sulfide” Cu(–Ni)–PGE mineralization in the footwall of the Sudbury Igneous Complex (Canada): Amy Lake PGE zone, East Range

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Amy Lake PGE zone is a “low-sulfide-type” Cu-(Ni-)PGE mineralization in the East Range footwall of the 1.85 Ga Sudbury Igneous Complex occurring in a 100-m-wide Sudbury Breccia belt that coincides with an impact-related major fracture zone (Bay Fault zone). Detailed hydrothermal alteration mapping, fluid inclusion, trace element, and stable isotope studies revealed a complex alteration and mineralization history in a multi-source, multi-stage Sudbury-related hydrothermal system. The two major stages of syn-Sudbury hydrothermal activity are characterized by similarly high-salinity, high-temperature fluids that are (1) locally derived from footwall granophyre bodies, and typified with high Ni/Cu and PGE/S ratios and high REE contents (magmatic–hydrothermal stage), and (2) a more voluminous Cu–Ni–PGE-rich fluid flux probably originated from the Sudbury Igneous Complex/footwall contact (hydrothermal stage). The second hydrothermal flux was introduced by brittle fractures in the area and resulted in a complex zonation of alteration assemblages and mineralization governed by local footwall composition. The Sudbury-related hydrothermal event was overprinted by shear-related epidote veining and calcite–chlorite replacement, both regionally present in the Sudbury structure. Based on analogies, the most important factors involved in the formation of hydrothermal low-sulfide mineralization are proposed to be (1) accumulation of PGE-enriched fluids, (2) large-scale brittle structures as conduits to these fluids, and (3) adequate host rock composition as a chemical trap resulting in sulfide and PGM precipitation. In environments meeting these criteria, hydrothermal PGE mineralization is known to have formed not only in the Sudbury footwall but also from mafic–ultramafic intrusions associated with primary magmatic PGE from several locations around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ames DE, Farrow CEG (2007) Metallogeny of the Sudbury mining camp, Ontario. In Goodfellow WD (ed) Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. GAC Mineral Deposits Division Special Publication 5:329–350

  • Ames DE, Watkinson DH, Parrish RR (1998) Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26:447–450

    Article  Google Scholar 

  • Ames DE, Golightly JP, Lightfoot PC, Gibson HL (2002) Vitric compositions in the Onaping Formation and their relationship to the Sudbury Igneous Complex, Sudbury structure. Econ Geol 97:1541–1562

    Article  Google Scholar 

  • Ames DE, McClenaghan MB, Averill S (2007) Footwall-hosted Cu-PGE (Au, Ag), Sudbury Canada: Towards a new exploration vector (abs). Fifth Decentennial International Conference on Mineral Exploration, September 2007, Toronto, Canada

  • Ames DE, Davidson A, Wodicka N (2008) Geology of the giant Sudbury polymetallic mining camp, Ontario, Canada. Econ Geol 103:1057–1077

    Article  Google Scholar 

  • Ames DE, Golightly JP, Zierenberg RA (2010a) Trace element and sulfur isotope composition of Sudbury Ni–Cu–PGE ores in diverse settings (abs). SEG 2010 Conference, October 2–5, 2010, Keystone, USA

  • Ames DE, Golightly JP, Kjarsgaard IM, Farrow CEG (2010b) Minor element composition of Sudbury ores: Implications for source contributions, genesis and exploration of Ni-Cu-PGE in diverse settings. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Bodnar RJ (1994) Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. Geochim Cosmochim Acta 58:1053–1063

    Article  Google Scholar 

  • Boudreau AE, McCallum IS (1986) Investigations of the Stillwater complex: III. The Picket Pin Pt/Pd deposit. Econ Geol 81:1953–1975

    Article  Google Scholar 

  • Bursztyn NE, Olivo GR (2010) PGE-Rich Ni–Cu sulfide mineralization in the Flin Flon Greenstone Belt, Manitoba, Canada: implications for hydrothermal remobilization of platinum group elements in basic-ultrabasic sequences. Econ Geol 105:1469–1490

    Article  Google Scholar 

  • Cabri LJ (1981) The platinum group minerals. In: Cabri LJ (ed) Platinum-group elements: mineralogy, geology, recovery. Can Inst Min Metall 23:136–138

  • Cabri LJ (2002) The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Min Metall Pet Special Volume 54:13–130

    Google Scholar 

  • Campbell A, Rye A, Petersen U (1984) A hydrogen and oxygen isotope study of the San Cristobal Mine, Peru: implications of the role of water to rock ratio for the genesis of wolframite deposits. Econ Geol 79:1818–1832

    Article  Google Scholar 

  • Campos-Alvarez NO, Samson IM, Fryer BJ, Ames DE (2010) Fluid sources and hydrothermal architecture of the Sudbury Structure: constraints from femtosecond LA-MC-ICP-MS Sr isotopic analysis of hydrothermal epidote and calcite. Chem Geol 278:131–150

    Article  Google Scholar 

  • Campos-Alvarez NO, Samson IM, Fryer BJ (2012) The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada. Miner Deposita 47:441–465

    Article  Google Scholar 

  • Chacko T, Riciputi LR, Cole DR, Horita J (1999) A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote–water system. Geochim Cosmochim Acta 63:1–10

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2010) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group-element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096

    Article  Google Scholar 

  • Ding TP, Schwarcz HP (1984) Oxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario. Can J Earth Sci 21:305–318

    Article  Google Scholar 

  • Dressler BO (1984) The effects of the Sudbury Event and the intrusion of the Sudbury Igneous Complex on the footwall rocks of the Sudbury Structure. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury Structure. OGS Special Volume 1:97–136

  • Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 8:791–794

    Article  Google Scholar 

  • Ebel DS, Naldrett AJ (1996) Fractional crystallization of sulfide ore liquids at high temperature. Econ Geol 91:607–621

    Article  Google Scholar 

  • Farrow CEG (1994) Geology, alteration, and the role of fluids in Cu-Ni-PGE mineralization of the footwall rocks to the Sudbury Igneous Complex, Levack and Morgan Townships, Sudbury District, Ontario. Unpublished Ph.D. thesis, Ottawa, Canada, Carleton University, 373 p.

  • Farrow CEG, Lightfoot PC (2002) Sudbury PGE revisited: Towards an integrated model. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Montreal, Can Inst Min Metall Pet Special Volume 54:273–297

  • Farrow CEG, Watkinson DH (1992) Alteration and the role of fluids in Ni, Cu and platinum-group element deposition, Sudbury Igneous Complex Contact, Onaping–Levack area, Ontario. Miner Petrol 46:67–83

    Article  Google Scholar 

  • Farrow CEG, Watkinson DH (1996) Geochemical evolution of the Epidote Zone, Fraser mine, Sudbury, Ontario: Ni–Cu–PGE remobilization by saline fluids. Explor Min Geol 5:17–31

    Google Scholar 

  • Farrow CEG, Watkinson DH (1997) Diversity of precious-metal mineralization in footwall Cu–Ni–PGE deposits, Sudbury, Ontario. Implications for hydrothermal models of formation. Can Miner 35:817–839

    Google Scholar 

  • Farrow CEG, Watkinson DH, Jones PC (1994) Fluid inclusions in sulfides from North and South range Cu–Ni–PGE deposits, Sudbury structure, Ontario. Econ Geol 89:647–655

    Article  Google Scholar 

  • Farrow CEG, Everest JO, King DM, Jolette C (2005) Sudbury Cu-(Ni)-PGE systems: Refining the classification using McCreedy West mine and Podolsky project case studies. In: Mungall JE (ed) Exploration for deposits of platinum-group elements. MAC Short Course Series 35:163–180

  • Frape SK, Fritz P (1982) The chemistry and isotopic composition of saline groundwaters from Sudbury basin, Ontario. Can J Earth Sci 19:645–661

    Article  Google Scholar 

  • Frei D, Liebscher A, Franz G, Dulski P (2004) Trace element geochemistry of epidote minerals. Rev Miner Geochem 56:553–605

    Article  Google Scholar 

  • Gál B, Molnár F, Peterson DM (2011) Cu-Ni-PGE mineralization in the South Filson Creek area, South Kawishiwi Intrusion, Duluth Complex: mineralization styles and magmatic and hydrothermal processes. Econ Geol 106:481–509

    Article  Google Scholar 

  • Gibson AM, Lightfoot PC, Evans TC (2010) Contrasting styles of low sulphide high precious metal mineralisation in the 148 and 109 FW zones: North and South Ranges of the Sudbury Igneous Complex, Ontario, Canada. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Graham CM, Sheppard SMF, Heaton THE (1980) Experimental hydrogen isotope studies—I. Systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O, and AlO(OH)-H2O. Geochim Cosmochim Acta 44:353–364

    Article  Google Scholar 

  • Grieve RAF (1994) An impact model of the Sudbury Structure. OGS Spec Vol 5:119–132

    Google Scholar 

  • Grokhovskaya TL (2010) PGE distribution and PGM assemblages in low-sulfide PGE deposits of the Paleoproterozoic Monchegorsk Complex, Kola Peninsula, Russia. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Hackbarth CJ, Petersen U (1984) A fractional crystallization model for the deposition of Argentian tetrahedrite. Econ Geol 79:448–460

    Article  Google Scholar 

  • Hanley JJ (2005) The aqueous geochemistry of the platinum-group elements (PGE) in surficial, low T hydrothermal and high-T magmatic hydrothermal environments. In: Mungall JE (ed) Exploration for platinum-group element deposits. MAC Short Course Series 35:35–56

  • Hanley JJ, Bray CJ (2009) The trace metal content of amphibole as a proximity indicator for Cu-Ni-PGE mineralization in the footwall of the Sudbury Igneous Complex, Ontario, Canada. Econ Geol 104:113–125

    Article  Google Scholar 

  • Hanley JJ, Mungall JE (2003) Chlorine enrichment and hydrous alteration of the Sudbury Breccia hosting footwall Cu-Ni-PGE mineralization at the Fraser mine, Sudbury, Ontario, Canada. Can Miner 41:857–881

    Article  Google Scholar 

  • Hanley JJ, Mungall JE, Bray CJ, Gorton MP (2004) The origin of bulk and water-soluble Cl and Br enrichments in ore-hosting Sudbury Breccia in the Fraser Copper Zone, Strathcona Embayment, Sudbury, Ontario, Canada. Can Miner 42:1777–1798

    Article  Google Scholar 

  • Hanley JJ, Mungall JE, Pettke T, Spooner ETC, Bray CJ (2005) Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. Miner Deposita 40:237–256

    Article  Google Scholar 

  • Hanley J, Ames D, Barnes J, Sharp Z, Guillong M (2011) Interaction of magmatic fluids and silicate melt residues with saline groundwater in the footwall of the Sudbury Igneous Complex, Ontario, Canada: new evidence from bulk rock geochemistry, fluid inclusions and stable isotopes. Chem Geol 281:1–25

    Article  Google Scholar 

  • Harney DMW, Merkle RKW, von Gruenwaldt G (1990) Platinum-group element behavior in the lower part of the upper zone, eastern Bushveld Complex; implications for the formation of the main magnetite layer. Econ Geol 85:1777–1789

    Article  Google Scholar 

  • Heaman LM (1997) Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25:299–302

    Article  Google Scholar 

  • Hinchey JG, Hattori KH (2005) Magmatic mineralization and hydrothermal enrichment of the High Grade Zone at the Lac des Iles palladium mine, northern Ontario, Canada. Miner Deposita 40:13–23

    Article  Google Scholar 

  • Hinchey JG, Hattori KH, Lavigne M (2005) Geology, petrology, and controls on PGE mineralization of the Southern Roby and Twilight Zones, Lac des Iles mine, Canada. Econ Geol 100:43–61

    Article  Google Scholar 

  • Jago BC, Morrison GG, Little TL (1994) Metal zonation patterns and microtextural and micromineralogical evidence for alkali- and halogen-rich fluids in the genesis of the Victor Deep and McCreedy East footwall copper orebodies, Sudbury Igneous Complex. OGS Spec Vol 5:65–75

    Google Scholar 

  • James RS, Sweeny JM, Peredery W (1991) Thermobarometry of the Levack gneisses-footwall rocks to the Sudbury Igneous Complex (SIC): Lithoprobe, Abitibi-Grenville project. Vancouver BC, University of British Columbia, Abitibi Grenville Transect Report 32:179–182

  • Kasemann S, Meixner A, Rocholl A, Vennemann T, Schmitt A, Wiedenbeck M (2001) Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612, and reference materials JB-2G and JR-2G. Geostand Newslett 25:405–416

    Article  Google Scholar 

  • Keays RR, Lightfoot PC (2004) Formation of Ni–Cu–platinum group element sulfide mineralization in the Sudbury impact melt sheet. Miner Petrol 82:217–258

    Article  Google Scholar 

  • Kjarsgaard IM, Ames DE (2010) Ore mineralogy of Cu-Ni-PGE deposits in the North Range footwall environment, Sudbury. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb zircon and baddeleyite ages for the Sudbury Area. OGS Spec Vol 1:431–446

    Google Scholar 

  • Kullerud G, Yund A, Moh GH (1969) Phase relation in the Cu–Fe–S, Cu–Ni–S and Fe–Ni–S system. Carnegie Inst Wash Year Book 15:323–343

    Google Scholar 

  • Li C, Naldrett AJ (1993a) Platinum-group minerals from the Deep Copper Zone of the Strathcona deposit, Sudbury, Ontario. Can Miner 31:31–44

    Google Scholar 

  • Li C, Naldrett AJ (1993b) High chlorine alteration minerals and calcium-rich brines in fluid inclusions from the Strathcona Deep Copper Zone, Sudbury, Ontario. Econ Geol 88:1780–1796

    Article  Google Scholar 

  • Li C, Naldrett AJ, Coats CJA, Johannessen P (1992) Platinum, palladium, gold and copper-rich stringers at the Strathcona mine, Sudbury: their enrichment by fractionation of a sulfide liquid. Econ Geol 87:1584–1598

    Article  Google Scholar 

  • Ligang Z, Jingxiu L, Huanbo Z, Zhensheng C (1989) Oxygen isotope fractionation in the quartz–water–salt system. Econ Geol 84:1643–1650

    Article  Google Scholar 

  • Linke WF (1965) Solubilities of inorganic and metal organic compounds. American Chemical Society, Van Nostrand, 1914 p

    Google Scholar 

  • Magyarosi Z, Watkinson DH, Jones PC (2002) Mineralogy of Ni–Cu–platinum-group element sulfide ore in the 800 and 810 orebodies, Copper Cliff South mine, and P–T–X conditions during the formation of platinum-group minerals. Econ Geol 97:1471–1486

    Article  Google Scholar 

  • Marshall DD, Watkinson DH, Farrow CEG, Molnár F, Fouillac AM (1999) Multiple fluid generations in the Sudbury Igneous Complex: fluid inclusion, Ar, O, H, Rb and Sr evidence. Chem Geol 154:1–19

    Article  Google Scholar 

  • Matthews A (1994) Oxygen isotope geothermometers for metamorphic rocks. J Metamorph Geol 12:211–219

    Article  Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionation between zoisite and water. Geochim Cosmochim Acta 47:645–654

    Article  Google Scholar 

  • McCormick KA, McDonald AM (1999) Chlorine-bearing amphiboles from the Fraser mine, Sudbury, Ontario, Canada: description and crystal chemistry. Can Miner 37:1385–1403

    Google Scholar 

  • McCormick KA, Lesher CM, McDonald AM, Fedorowich JS, James RS (2002) Chlorine and alkali geochemical halos in the footwall breccia and sublayer norite at the margin of the Strathcona Embayment, Sudbury Structure, Ontario. Econ Geol 97:1509–1519

    Google Scholar 

  • Meldrum A, Abdel-Rahman A-FM, Martin RF, Wodicka N (1997) The nature, age and petrogenesis of the Cartier batholith, northern flank of the Sudbury structure, Ontario, Canada. Precambrian Res 82:265–285

    Article  Google Scholar 

  • Mogessie A, Stumpfl EF, Weiblen PW (1991) The role of fluids in the formation of platinum-group minerals, Duluth Complex, Minnesota: mineralogic, textural, and chemical evidence. Econ Geol 86:1506–1518

    Article  Google Scholar 

  • Molnár F, Watkinson DH, Jones PC, Gatter I (1997) Fluid inclusion evidence for hydrothermal enrichment of magmatic ore at the contact zone of the Ni–Cu–platinum-group element 4b deposit, Lindsley mine, Sudbury, Canada. Econ Geol 92:674–685

    Article  Google Scholar 

  • Molnár F, Watkinson DH, Everest JO (1999) Fluid-inclusion characteristics of hydrothermal Cu-Ni-PGE veins in granitic and metavolcanic rocks at the contact of the Little Stobie deposit, Sudbury, Canada. Chem Geol 154:279–301

    Article  Google Scholar 

  • Molnár F, Watkinson DH, Jones PC (2001) Multiple hydrothermal processes in footwall units of the North Range, Sudbury Igneous Complex, Canada, and implications for the genesis of vein-type Cu–Ni–PGE deposits. Econ Geol 96:1645–1670

    Article  Google Scholar 

  • Morrison GG, Jago BC, White TL (1994) Footwall mineralization of the Sudbury Igneous Complex. OGS Spec Vol 5:57–63

    Google Scholar 

  • Mungall JE (2007) Crystallization of magmatic sulfides: an empirical model and application to Sudbury ores. Geochim Cosmochim Acta 71:2809–2819

    Article  Google Scholar 

  • Mungall JE, Ames DE, Hanley JJ (2004) Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts. Nature 429:546–548

    Article  Google Scholar 

  • Mungall JE, Andrews DRA, Cabri LJ, Sylvester PJ, Tubrett M (2005) Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim Cosmochim Acta 69:4349–4360

    Article  Google Scholar 

  • Naldrett AJ (1984) Mineralogy and composition of the Sudbury ores. OGS Spec Vol 1:309–326

    Google Scholar 

  • Naldrett AJ, Pessaran R, Asif M, Li C (1994) Compositional variation in the Sudbury ores and prediction of the proximity of footwall copper-PGE orebodies. OGS Spec Vol 5:133–144

    Google Scholar 

  • Nelles EW, Lesher CM, Lafrance B (2010) Mineralogy and textures of Cu–PPGE–Au-rich mineralization in the Morrison (Levack footwall) Deposit, Sudbury, Ontario (abs). SEG 2010 Conference, 2010, Keystone, USA

  • Péntek A (2009) Partial melting and melt segregation within the contact aureole of the Sudbury Igneous Complex (Ontario, Canada) and their significance in hydrothermal Cu–Ni–PGE mineralization of the footwall. Unpublished PhD thesis, Budapest, Hungary, Eötvös Loránd University, 163 p.

  • Péntek A, Molnár F, Watkinson DH, Jones PC (2008) Footwall-type Cu–Ni–PGE mineralization in the Broken Hammer area, Wisner township, North Range, Sudbury structure. Econ Geol 103:1005–1028

    Article  Google Scholar 

  • Péntek A, Molnár F, Watkinson DH, Jones PC, Mogessie A (2011) Partial melting and melt segregation in footwall units within the contact aureole of the Sudbury Igneous Complex (North and East Ranges, Sudbury structure), with implications for their relationship to footwall Cu-Ni-PGE mineralization. Int Geol Rev 53:291–325

    Article  Google Scholar 

  • Péntek A, Molnár F, Tuba G, Watkinson DH, Jones PC (2013) The significance of partial melting processes in hydrothermal ‘low-sulfide’ Cu-Ni-PGE mineralization within the footwall of the Sudbury Igneous Complex, Ontario, Canada. Econ Geol 108:59–78

    Article  Google Scholar 

  • Polovina JS, Hudson DM, Jones RE (2004) Petrographic and geochemical characteristics of postmagmatic hydrothermal alteration and mineralization in the J-M Reef, Stillwater Complex, Montana. Can Mineral 42:261–277

    Article  Google Scholar 

  • Price MM, Samson IM, Fryer BJ, Barrie CT (2010) Platinum group element mineralization in the River Valley Intrusion, Ontario, Canada: Characterization and effects of water-rock interaction In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Ripley EM, Butler BK, Taib NI, Lee I (1993) Hydrothermal alteration in the Babbitt Cu-Ni deposit, Duluth Complex: mineralogy and Hydrogen isotope systematics. Econ Geol 88:679–696

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral Geochem 12, 644 p.

  • Rowell WF, Edgar AD (1986) Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, northeastern Ontario. Econ Geol 81:1272–1277

    Article  Google Scholar 

  • Rumble D III, Hoering TC (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Acc Chem Res 27:237–241

    Article  Google Scholar 

  • Schwarz HP (1973) Sulfur isotope analysis of some Sudbury, Ontario ores. Can J Earth Sci 10:1444–1459

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determining the hydrogen and oxygen isotope ratios from water and solid hydrous substances. Chem Geol 178:197–210

    Article  Google Scholar 

  • Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, 239 p

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Miner Geochem 16:163–183

    Google Scholar 

  • Stewart MC, Lightfoot PC (2010) Diversity in platinum group element (PGE) mineralization at Sudbury: New discoveries and process controls. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Su S, Lesher CM (2011) Geochemistry and petrogenesis of the Wengeqi mafic–ultramafic complex and associated PGE mineralization, Guyang County, Inner Mongolia. China Miner Deposita. doi:10.1007/s00126-011-0351-x

    Google Scholar 

  • Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 229–302

    Google Scholar 

  • Tindle AG, Webb PC (1994) PROBE-AMPH—a spreadsheet program to classify microprobe-derived amphibole analyses. Comput Geosci 20:1201–1228

    Article  Google Scholar 

  • Tuba G, Molnár F, Watkinson DH, Jones PC, Mogessie A (2010) Hydrothermal vein and alteration assemblages associated with low-sulfide footwall Cu–Ni–PGE mineralization and regional hydrothermal processes, North and East Ranges, Sudbury structure, Canada. SEG Spec Publ 15:573–598

    Google Scholar 

  • Wang CY, Prichard HM, Zhou MF, Fisher PC (2008) Platinum-group minerals from the Jinbaoshan Pd-Pt deposit, SW China: evidence for magmatic origin and hydrothermal alteration. Miner Deposita 43:791–803

    Article  Google Scholar 

  • Watkinson DH (1999) Platinum-group-element enrichment in Cu–Ni–rich sulfides from footwall deposits, Sudbury Igneous Complex, Canada. Chronique Rech Min 535:29–43

    Google Scholar 

  • Watkinson DH, Melling DR (1992) Hydrothermal origin of platinum-group mineralization in low-temperature copper sulfide-rich assemblages, Salt Chuck Intrusion, Alaska. Econ Geol 87:175–184

    Article  Google Scholar 

  • Watkinson DH, Ohnenstetter D (1992) Hydrothermal origin of platinum-group mineralization in the Two Duck Lake intrusion, Coldwell Complex, Northwestern Ontario. Can Min 30:121–136

    Google Scholar 

  • White CJ, Mungall JE, Spooner ETC. (2010) Low-sulphide PGE-Cu-Ni mineralisation of the Sudbury Igneous Complex, Canada. In: Jugo PJ, Lesher CM, Mungall JE (eds) Abstracts, 11th International Platinum Symposium, 2010, Sudbury, Ontario, Canada. OGS Misc. Release Data 269

  • Williams-Jones AE, Samson IM (1990) Theoretical estimation of halite solubility in the system NaCl–CaCl2–H2O: applications to fluid inclusions. Can Miner 28:299–304

    Google Scholar 

  • Wood SA (2002) The aqueous geochemistry of the platinum-group elements with applications to ore deposits. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Min Metall Pet Special Volume 54:211–249

    Google Scholar 

  • Wu I, Petersen U (1977) Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru. Econ Geol 72:993–1016

    Article  Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 121:247–263

    Article  Google Scholar 

  • Zieg MJ, Marsh BD (2005) The Sudbury Igneous Complex: viscous emulsion differentiation of a superheated impact melt sheet. Geol Soc Am Bull 117:1427–1450

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Wallbridge Mining Company Ltd. for allowing access to their properties and supporting bulk sample analyses. Prof. Dan Marshall is thanked for kindly providing raw stable isotope data of various silicates from his previous research. The manuscript was greatly improved thanks to the suggestions of two Mineralium Deposita reviewers. The project was financially supported by the Canada-Hungary Science and Technology Agreement to F.M. and D.H.W., a Natural Sciences and Engineering Research Council of Canada grant to Carleton University and D.H.W., as well as the Geological Survey of Canada’s Targeted Geoscience Initiative-4 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Györgyi Tuba.

Additional information

Editorial handling: C. Li

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Summary of trace element concentrations in epidote and allanite from the studied alteration groups (PDF 244 kb)

Online Resource 2

Summary of fluid inclusion microthermometric data (PDF 220 kb)

Appendix

Appendix

Fig. 20

Fig. 20
figure 20

Orientation of vein assemblages in the Amy Lake PGE zone

Fig. 21

Fig. 21
figure 21

Histograms of Fe3+ content of epidote in different alteration groups of the Amy Lake PGE zone expressed as \( {X_{\mathrm{Ep}}} = {{{\mathrm{F}{{\mathrm{e}}^{3+ }}}} \left/ {{\left( {\mathrm{F}{{\mathrm{e}}^{3+ }}+\mathrm{Al} + \mathrm{Cr}-2} \right)}} \right.} \)

Table 4

Table 4 Summary of abundance, texture and composition of trace minerals in the Amy Lake PGE zone as a function of host minerals

Table 5

Table 5 Chemical composition of selected hydrous silicates

Table 6

Table 6 Whole-rock analyses of Sudbury footwall units used for the normalization of trace element data of epidote

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuba, G., Molnár, F., Ames, D.E. et al. Multi-stage hydrothermal processes involved in “low-sulfide” Cu(–Ni)–PGE mineralization in the footwall of the Sudbury Igneous Complex (Canada): Amy Lake PGE zone, East Range. Miner Deposita 49, 7–47 (2014). https://doi.org/10.1007/s00126-013-0468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-013-0468-1

Keywords

Navigation