Skip to main content

Advertisement

Log in

Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We remelted and analyzed crystallized silicate melt inclusions in quartz from a porphyritic albite-zinnwaldite microgranite dike to determine the composition of highly evolved, shallowly intruded, Li- and F-rich granitic magma and to investigate the role of crystal fractionation and aqueous fluid exsolution in causing the extreme extent of magma differentiation. This dike is intimately associated with tin- and tungsten-mineralized granites of Zinnwald, Erzgebirge, Germany. Prior research on Zinnwald granite geochemistry was limited by the effects of strong and pervasive greisenization and alkali-feldspar metasomatism of the rocks. These melt inclusions, however, provide important new constraints on magmatic and mineralizing processes in Zinnwald magmas.

The mildly peraluminous granitic melt inclusions are strongly depleted in CAFEMIC constituents (e.g., CaO, FeO, MgO, TiO2), highly enriched in lithophile trace elements, and highly but variably enriched in F and Cl. The melt inclusions contain up to several thousand ppm Cl and nearly 3 wt% F, on average; several inclusions contain more than 5 wt% F. The melt inclusions are geochemically similar to the corresponding whole-rock sample, except that the former contain much more F and less CaO, FeO, Zr, Nb, Sr, and Ba. The Sr and Ba abundances are very low implying the melt inclusions represent magma that was more evolved than that represented by the bulk rock. Relationships involving melt constituents reflect increasing lithophile-element and halogen abundances in residual melt with progressive magma differentiation. Modeling demonstrates that differentiation was dominated by crystal fractionation involving quartz and feldspar and significant quantities of topaz and F-rich zinnwaldite. The computed abundances of the latter phases greatly exceed their abundances in the rocks, suggesting that the residual melt was separated physically from phenocrysts during magma movement and evolution.

Interactions of aqueous fluids with silicate melt were also critical to magma evolution. To better understand the role of halogen-charged, aqueous fluids in magmatic differentiation and in subsequent mineralization and metasomatism of the Zinnwald granites, Cl-partitioning experiments were conducted with a F-enriched silicate melt and aqueous fluids at 2,000 bar (200 MPa). The results of the experimentally determined partition coefficients for Cl and F, the compositions of fluid inclusions in quartz and other phenocrysts, and associated geochemical modeling point to an important role of magmatic-hydrothermal fluids in influencing magma geochemistry and evolution. The exsolution of halogen-charged fluids from the Li- and F-enriched Zinnwald granitic magma modified the Cl, alkali, and F contents of the residual melt, and may have also sequestered Li, Sn, and W from the melt. Many of these fluids contained strongly elevated F concentrations that were equivalent to or greater than their Cl abundances. The exsolution of F-, Cl-, Li-, ± W- and Sn-bearing hydrothermal fluids from Zinnwald granite magmas was important in effecting the greisenizing and alkali-feldspathizing metasomatism of the granites and the concomitant mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–c
Fig. 6a,b
Fig. 7
Fig. 8a–c
Fig. 9
Fig. 10
Fig. 11a,b
Fig. 12

Similar content being viewed by others

References

  • Aksyuk AM (2000) Estimation of fluorine concentrations in fluids of mineralized skarn systems. Econ Geol 95:1339–1347

    CAS  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (2000a) Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F mineralized Mole Granite (Australia). Geochim Cosmochim Acta 64:3373–3393

    CAS  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (2000b) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ Geol 95:1563–1581

    CAS  Google Scholar 

  • Bacon CR (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochim Cosmochim Acta 53:1055-1066

    CAS  Google Scholar 

  • Bolduan H, Lächelt A, Malasek F (1967) Zur Geologie und Mineralisation der Lagerstätte Zinnwald (Cinovec). Freib Forsch-H C218:35–52

  • Breiter K, Förster H-J, Seltmann R (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenic province. Miner Deposita 34:505–521

    Article  CAS  Google Scholar 

  • Burt DM (1981) Acidity-salinity diagrams – application to greisen and porphyry deposits. Econ Geol 76:832–843

    Google Scholar 

  • Cocherie A, Johan V, Rossi P, Stemprok M (1991) Trace-element variations and lanthanide tetrad effect studied in a Variscan lithium albite granite: case of the Cinovec granite (Czechoslovakia). In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals: Proceedings of the 25 years SGA anniversary meeting. Balkema, Rotterdam, pp 745–749

  • Deer WA, Howie RA, Zussman J (1989) An introduction to the rock-forming minerals. Longman Scientific Technical, New York, 528 pp

  • Dolejs D, Stemprok M (2001) Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Kruzné hory batholith, Czech Republic. Bull Czech Geol Surv 76:77–99

    CAS  Google Scholar 

  • Dunbar NW, Hervig RL (1992) Volatile and trace element composition of melt inclusions from the Lower Bandelier Tuff: implications for magma chamber processes and eruptive style. J Geophys Res 97:15151–15170

    CAS  Google Scholar 

  • Durisova J (1988) Diversity of fluids in the formation of ore assemblages in the Bohemian Massif (Czechoslovakia). Bull Mineral 111:477–492

    CAS  Google Scholar 

  • Durisova J, Charoy B, Weisbrod A (1979) Fluid inclusion studies in minerals from tin and tungsten deposits in the Krusne Hory Mountains (Czechoslovakia). Bull Mineral 102:665–675

    CAS  Google Scholar 

  • Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265

    Article  CAS  Google Scholar 

  • Fedkin AV, Seltmann R, Förster H-J (2001) Li-bearing micas as a fractionation indicator of tin granites: The Sadisdorf-Schellerhau granite suite, eastern Erzgebirge. In: Piestrzynski et al (eds). Mineral deposits at the beginning of the 21st century, Swets Zeitlinger, Lisse, pp 409–412

  • Förster H-J (2001) Synchysite-(Y)–synchysite-(Ce) solid solutions from Markersbach, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Mineral Petrol 72:259–280

    Article  Google Scholar 

  • Förster H-J, Tischendorf G (1992) Volatile signatures of the Hercynian postkinematic granites of the Erzgebirge: implications to related tin-tungsten-molybdenum metallogenesis. Chem Erde 52:47–61

    Google Scholar 

  • Förster H-J, Seltmann R, Tischendorf G (1995) High-fluorine, low-phosphorus A-type (post-collision) silicic magmatism in the Erzgebirge. Terra Nostra 7:32–35

    Google Scholar 

  • Förster H-J, Tischendorf G, Seltmann R, Gottesmann B (1998) Die variszischen Granite des Erzgebirges: neue Aspekte aus stofflicher Sicht. Z geol Wiss 26:31–60

    Google Scholar 

  • Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Haapala I (1977) Petrography and geochemistry of the Eurajoki stock, a rapakivi-granite complex with greisen-type mineralization in southwestern Finland. Geol Sur Finland Bull 286, 128 pp

  • Halter WE, Williams-Jones AE, Kontak DJ (1998) Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization. Chem Geol 150:1–17

    Article  CAS  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin-tungsten ore deposition. Econ Geol 90:705–729

    Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  CAS  Google Scholar 

  • Johan Z, Johan V (1993) Accessory minerals of the Cinovec granitic cupola: behaviour of REE in F- and CO2-rich fluids. In: Fenoll Hach-Ali P, Torres Ruiz J, La Guioconda FG (eds) Current research in geology applied to ore deposits. Granada, pp 625–628

  • Johan Z, Johan V (2001) Les micas de la coupole granitique de Cínovec (Zinnwald), République tche‘que: un nouvel apercu sur la métallogene‘se de l’étain et du tungste‘ne. Compt Rend Acad Sci, Serie II, Sci Terre Planet 332:307–313

    Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150

    CAS  Google Scholar 

  • Kovalenko NI, Ryzenko BN, Beljuchanova TK, Barsukov VL (1986) On the solubility of cassiterite in solutions of HF and species of Sn in fluids. Dokl Akad Nauk SSSR 290:211–214 (in Russian)

    CAS  Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Springer, Berlin Heidelberg New York, 211 pp

  • Lenharo SLR, Moura MA, Botelho NF (2002) Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: examples from Pitinga and Goiás, Brazil. Precamb Res 119:277–299

    Article  CAS  Google Scholar 

  • London D (1999) Melt boundary layers and the growth of pegmatitic textures. Can Mineral 37:826–827

    Google Scholar 

  • Lowenstern JB (1995) Applications of silicate melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Ass Can 23, pp 71–99

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns; a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196

    Article  CAS  Google Scholar 

  • Müller B, Seward TM (2001) Spectrophotometric determination of the stability of tin(II) chloride complexes in aqueous solution up to 300 degrees C. Geochim Cosmochim Acta 65:4187–4199

    Article  Google Scholar 

  • Müller A, Seltmann R, Behr H-J (2000) Application of cathodoluminescence to magmatic quartz in a tin granite – case study from the Schellerhau Granite Complex, eastern Erzgebirge, Germany. Miner Deposita 35:169–189

    Article  Google Scholar 

  • Müller A, Breiter K, Seltmann R, Pecskay Z (2003) Quartz and feldspar zoning in igneous rocks of the Eastern Erzgebirge pluton (Germany, Czech Republic): evidence of multiple magma mixing. Lithos (in press)

  • Rieder M, Cavazzini G, D’yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval’ PV, Müller G, Neiva AMR, Radoslovich EW, Robert J-L, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Can Mineral 36:905–12

    CAS  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12, 644 pp

    Google Scholar 

  • Rub AK, Stemprok M, Rub M (1998) Tantalum mineralization in the apical part of the Cinovec (Zinnwald) granite stock. Mineral Petrol 63:199–222

    CAS  Google Scholar 

  • Schröcke H (1952) Sächsische Zinnerzlagerstätten, ihre Paragenese und Altersstellung. Freib Forsch-H C 3, 19–24

  • Seltmann R (1989) Depositions related with Hercynian postkinematic granitoid complexes. In: Tischendorf G (comp) Silicic magmatism and metallogenesis of the Erzgebirge. Veröff ZIPE, Akad Wissensch DDR 107, pp 111–148

  • Seltmann R (1994) Sub-volcanic minor intrusions in the Altenberg Caldera and their metallogeny. In: Seltmann R, Kaempf H, Moeller P (eds) Metallogeny of collisional orogens. Czech Geol Surv, Prague, pp 198–206

  • Seltmann R, Stemprok M (1995) Metallogenic overview of the Krusne Hory Mts. (Erzgebirge) region. In: Breiter K, Seltmann R (eds) Ore Mineralizations of the Krusne Hory Mts. (Erzgebirge): Excursion Guide, Third Biennial SGA Meeting, Prague, 28–31 August 1995. Czech Geological Survey, Prague, pp 1–18

  • Seltmann R, Stemprok M (2001) Fabric evidence in mineralized granites. In: Bankwitz et al. (eds) Tectonics, Abstract Volume and Excursion Guide. Exkursionsführer und Veröffentlichungen der GGW, pp 88–91

  • Seltmann R, Müller A (2003) From mantled feldspars to snowball quartzes: petrogenesis of the Eastern Erzgebirge granite pluton. In: Ramo T (ed) Granitic systems—state of the art and future avenues. IGCP-426 Symposium in honor of Professor Ilmari Haapala. Univ Helsinki, pp 96–99

  • Seltmann R, Förster H-J, Gottesmann B, Sala M, Wolf D, Stemprok M (1998) The Zinnwald greisen deposit related to post-collisional A-type silicic magmatism in the Variscan Eastern Erzgebirge / Krusne Hory. In: Breiter K (ed) Genetic significance of phosphorus in fractionated granites. Excursion Guide International Conference IGCP Project 373 in Perslak, Czech Geological Survey Prague, pp 33–50

  • Stemprok M (1961) Genetische Untersuchung der flachfallenden Gaenge auf der Erzlagerstätte Cinovec (Zinnwald) im Erzgebirge. Sbornik UUG, XXVI, Geol ser 2:455–518

  • Stemprok M (1965) Petrologie und die vertikale Ausdehnung der Mineralisation in der Zinnwalder Granitkuppe. Sbornik geol ved, Rada Loziskova Geol 5:7–106

  • Stemprok M, Sulcek Z (1969) Geochemical profile through an ore-bearing lithium granite. Econ Geol 64:392–404

    CAS  Google Scholar 

  • Stemprok M, Holub FV, Novah JK (2003) Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krusne Hory/Erzgebirge batholith and their phosphorus contents. Bull Geosci 78:277–296

    CAS  Google Scholar 

  • Sterner SM, Hall DL, Keppler H (1995) Compositional re-equilibration of fluid inclusions in quartz. Contrib Mineral Petrol 139:394–401

    Google Scholar 

  • Sushchevskaya TM, Durisova Y, Yerokhin AM, Knyazeva SN, Kokina TA, Kalinichenko AM, Lokhov KI, Prisyagina NI (1995) Chemical characteristics of mineral-forming media of cassiterite-quartz deposits from fluid inclusion data. Geokhimiya 6:809–825 (in Russian)

    Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Elsevier, Amsterdam, 543 pp

  • Taylor JC, Wall VJ (1993) Cassiterite solubility, tin speciation, and transport in magmatic aqueous phase. Econ Geol 88:437–460

    CAS  Google Scholar 

  • Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Fluessigkeitseinschluessen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralization des Erzgebirges. Freib Forsch-H C370:1- 85 + XVI pp

  • Thomas R (1989) Physicochemical conditions as controlling factors on magmatism and metallogenesis: Plutonic and volcanic rocks. In: Tischendorf G (ed) Silicic magmatism and metallogenesis of the Erzgebirge. Veröf ZIPE, Akad Wissensch DDR 107, pp 225–233

  • Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: Volatile content and entrapment conditions. J Petrol 38:1753–1765

    CAS  Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2902

    Article  CAS  Google Scholar 

  • Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkondatierungen zur Bestimmung des Intrusionsalters des Niederbobritzscher Granites. Terra Nostra 8:183–184

    Google Scholar 

  • Tischendorf G (1989) (comp) Silicic magmatism and metallogenesis of the Erzgebirge. Veröff ZIPE, Akad Wissensch DDR 107:1–316

  • Tischendorf G, Förster H-J (1994) Hercynian granite magmatism and related metallogenesis in the Erzgebirge: A status report. In: von Gehlen K, Klemm DD (eds) Mineral Deposits of the Erzgebirge/Krusné hory (Germany/Czech Republic). Monograph Series on Mineral Deposits 31, pp 5–23

  • Tischendorf G, Just G, Gottesman B (1988) Distribution of elements at a contact albite granite/rhyolite, Zinnwald, Erzgebirge (G.D.R.). Chem Erde 48:155–162

    CAS  Google Scholar 

  • Tischendorf G, Gottesmann B, Förster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral Mag 61:809–834

    CAS  Google Scholar 

  • Tischendorf G, Förster H-J, Gottesmann B (2001) Minor- and trace-element composition of trioctahedral micas: a review. Mineral Mag 64:249–276

    Article  Google Scholar 

  • Tischendorf G, Rieder M, Förster H-J, Gottesmann B, Guidotti CV (2003) A revised system of common potassium micas based on cations in the octahedral sheet. Mineral Mag (in press)

  • Webster JD (1990) Partitioning of F between H2O ± CO2 fluids and topaz rhyolite melt: Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438

    CAS  Google Scholar 

  • Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition. Geochim Cosmochim Acta 52:2091–2105

    CAS  Google Scholar 

  • Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Paper 246:21–34

    Google Scholar 

  • Webster JD, Duffield WA (1991) Volatiles and lithophile elements in Taylor Creek Rhyolite: Constraints from glass inclusion analysis. Am Mineral 76:1628–1645

    CAS  Google Scholar 

  • Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico. Econ Geol 89:840–850

    CAS  Google Scholar 

  • Webster JD, DeVivo B (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am Mineral 87:1046–1061

    Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    CAS  Google Scholar 

  • Webster JD, Burt DM, Aguillon RA (1996) Volatile and lithophile trace-element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions. Geochim Cosmochim Acta 60:3267–3283

    Article  CAS  Google Scholar 

  • Webster JD, Thomas R, Rhede D, Förster H-J, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim Cosmochim Acta 61:2589–2604

    CAS  Google Scholar 

  • Yushan L, Shuqing C (1986) An experimental study on cassiterite solubility and tin transport during mineralization. Acta Geol Sin 1:78–88

    Google Scholar 

  • Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    CAS  Google Scholar 

Download references

Acknowledgements

Bärbel Gottesmann, Horst Kämpf, Gerhard Tischendorf, and Jürgen Wasternack are thanked for their assistance in saving drill core materials from Erzgebirge granites of invaluable scientific importance. Some samples of this study are stored at the rock archive of the Geological Survey of Brandenburg, Germany; at the London Natural History Museum; and in the mineral deposits collections of the American Museum of Natural History. We express our appreciation for the assistance of undergraduate students Meryl Eschen and Cherri Sookdeo in sample preparation, analytical work, and discussion. The manuscript benefited from thoughtful reviews by Andreas Audetat, Bernd Lehmann, and an anonymous referee. This material is based on work supported by the National Science Foundation under grant number EAR-9725072 and through a Research Experiences for Undergraduates supplement to this award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Webster.

Additional information

Editorial Handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, J., Thomas, R., Förster, HJ. et al. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Miner Deposita 39, 452–472 (2004). https://doi.org/10.1007/s00126-004-0423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-004-0423-2

Keywords

Navigation