Skip to main content
Log in

Role for sterol regulatory element binding protein-1c activation in mediating skeletal muscle insulin resistance via repression of rat insulin receptor substrate-1 transcription

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Sterol regulatory element binding protein-1c (SREBP-1c) is a master regulator of fatty acid synthase and controls lipogenesis. IRS-1 is the key insulin signalling mediator in skeletal muscle. In the present study, we investigated the role of SREBP-1c in the regulation of IRS-1 in skeletal muscle cells.

Methods

L6 muscle cells were treated with palmitic acid (PA) or metformin. Adenovirus vectors expressing Srebp-1c (also known as Srebf1) and small interfering RNA (siRNA) against Srebp-1c were transfected into the L6 cells. Protein–DNA interactions were assessed by luciferase reporter analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assay.

Results

We found that both gene and protein expression of SREBP-1c was increased in contrast to IRS-1 expression in PA-treated L6 cells. SREBP-1c overproduction decreased Irs-1 mRNA and IRS-1 protein expression in a dose-dependent manner, and suppressed the resultant insulin signalling, whereas SERBP-1c knockdown by Serbp-1c siRNA blocked the downregulation of IRS-1 induced by PA. Protein–DNA interaction studies demonstrated that SREBP-1c was able to bind to the rat Irs-1 promoter region, thereby repressing its gene transcription. Of particular importance, we found that metformin treatment downregulated Srebp-1c promoter activity, decreased the specific binding of SREBP-1c to Irs-1 promoter and upregulated Irs-1 promoter activity in PA-cultured L6 cells.

Conclusions/interpretation

Our data indicate for the first time that SREBP-1c activation participates in skeletal muscle insulin resistance through a direct effect of suppressing Irs-1 transcription. These findings imply that SREBP-1c could serve as an attractive therapeutic target for insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-NBDG:

2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-2-deoxy-d-glucose

AMPK:

AMP-activated protein kinase

bHLH:

Basic helix-loop-helix

ChIP:

Chromatin immunoprecipitation assay

EMSA:

Electrophoretic mobility shift assay

FAS:

Fatty acid synthase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

LXR:

Liver X receptor

PA:

Palmitic acid

PI3K:

Phosphatidlyinositol-3-kinase

SD rat:

Sprague-Dawley rat

siRNA:

Small interfering RNA

SRE:

Sterol regulatory element

SREBP-1c:

Sterol regulatory element binding protein-1c

References

  1. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870

    Article  CAS  PubMed  Google Scholar 

  2. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  3. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:S10–S16

    Article  PubMed Central  PubMed  Google Scholar 

  4. Guillet-Deniau I, Mieulet V, Le Lay S et al (2002) Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes 51:1722–1728

    Article  CAS  PubMed  Google Scholar 

  5. Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19:65–73

    Article  CAS  PubMed  Google Scholar 

  6. Shimano H (2007) SREBP-1c and TFE3, energy transcription factors that regulate hepatic insulin signaling. J Mol Med 85:437–444

    Article  CAS  PubMed  Google Scholar 

  7. Ferré P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82

    Article  PubMed  Google Scholar 

  8. Sesti G, Federici M, Hribal ML et al (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111

    Article  CAS  PubMed  Google Scholar 

  9. Kerouz NJ, Hörsch D, Pons S, Kahn CR (1997) Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 100:3164–3172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Huang C, Thirone AC, Huang X, Klip A (2005) Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in L6 myotubes. J Biol Chem 280:19426–19435

    Article  CAS  PubMed  Google Scholar 

  11. Bouzakri K, Zachrisson A, Al-Khalili L et al (2006) siRNA-base gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab 4:89–96

    Article  CAS  PubMed  Google Scholar 

  12. Taniguchi CM, Ueki K, Kahn R (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 115:718–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shimomura I, Matsuda M, Hammer RE et al (2000) Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86

    Article  CAS  PubMed  Google Scholar 

  14. Tobe K, Suzuki R, Aoyama M et al (2001) Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2(−/−) mouse liver. J Biol Chem 276:38337–38340

    Article  CAS  PubMed  Google Scholar 

  15. Ide T, Shimano H, Yahagi N et al (2004) SREBP-1c suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 6:351–357

    Article  CAS  PubMed  Google Scholar 

  16. Bi Y, Cai MY, Liang H et al (2009) Increased CPT-1 expression and decreased SREBP-1c expression is associated with reduced intramuscular triglyceride accumulation after insulin therapy in high fat diet and streptozotocin induced diabetic rats. Metabolism 58:779–786

    Article  CAS  PubMed  Google Scholar 

  17. Bi Y, Sun WP, Chen X et al (2008) Effects of early insulin therapy on nuclear factor κB and cytokine gene expressions in the liver and muscle of fat-fed, streptozocin-treated diabetic SD rats. Acta Diabetol 45:167–178

    Article  CAS  PubMed  Google Scholar 

  18. Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in L6 rat skeletal muscle cells. Endocrinology 148:293–299

    Article  CAS  PubMed  Google Scholar 

  19. Logette E, Solary E, Corcos L (2005) Identification of a functional DNA binding site for the SREBP-1c transcription factor in the first intron of the human caspase-2 gene. Biochim Biophys Acta 1738:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Salvadó L, Coll T, Gómez-Foix AM et al (2013) Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 56:1372–1382

    Article  PubMed  Google Scholar 

  21. Kamei Y, Miura S, Suganami T et al (2008) Regulation of SREBP-1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology 149:2293–2305

    Article  CAS  PubMed  Google Scholar 

  22. Savage DB, Petersen KF, Shulman GI (2005) Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 45:828–833

    Article  CAS  PubMed  Google Scholar 

  23. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  PubMed  Google Scholar 

  24. Hotamisligil GS (2005) Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54:S73–S78

    Article  CAS  PubMed  Google Scholar 

  25. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hommelberg PP, Plat J, Sparks LM et al (2011) Palmitate-induced skeletal muscle insulin resistance does not require NF-κB activation. Cell Mol Life Sci 68:1215–1225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kraegen EW, Cooney GJ (2008) Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol 19:235–241

    Article  CAS  PubMed  Google Scholar 

  28. Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16:414–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163

    Article  CAS  PubMed  Google Scholar 

  30. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Slawik M, Vidal-Puig AJ (2006) Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 5:144–164

    Article  CAS  PubMed  Google Scholar 

  32. Guillet-Deniau I, Pichard AL, Kone A et al (2004) Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 117:1937–1944

    Article  CAS  PubMed  Google Scholar 

  33. Xie X, Liao H, Dang H et al (2009) Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol 23:434–443

    Article  CAS  PubMed  Google Scholar 

  34. Chakravarty K, Wu SY, Chiang CM, Samols D, Hanson RW (2004) SREBP-1c and Sp1 interact to regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver. J Biol Chem 279:15385–15395

    Article  CAS  PubMed  Google Scholar 

  35. Okuno A, Tanaka J, Takahashi K et al (2009) Metformin primarily decreases plasma glucose not by gluconeogenesis suppression but by activating glucose utilization in a non-obese type 2 diabetes Goto-Kakizaki rats. Eur J Pharmacol 623:141–147

    Article  PubMed  Google Scholar 

  36. Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li Y, Xu S, Mihaylova MM et al (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13:376–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Li Xiaoying from Shanghai Ruijin Hospital for his constructive discussion during manuscript preparation. Some of the data were presented as an abstract at the 49th Annual European Association for the Study of Diabetes (EASD) Meeting in 2013 (number 2194).

Funding

This work was sponsored by grants from the National Natural Science Foundation of China Grant Award (81270906, 30800539), 973 project (2012CB517506), National Science Fund for Distinguished Young Scholars (81025005), China postdoctoral Science Foundation (2012M521050), Jiangsu postdoctoral Science Foundation, Jiangsu Province’s Key Provincial Talents Program (RC2011011), Jiangsu Province’s Key Discipline of Medicine (XK201105), the Key Project of Nanjing Medical Science and Technology Development Foundation (ZKX11017), National Natural Science Foundation of China Grant Award (81000338, 81070636), New Drug Development, Construction and management of Clinical Biobank for Major Disease (2011ZX0907-001-08), the Project of National Key Clinical Division, Jiangsu Natural Science Foundation (KA037) and Guangdong Natural Science Foundation (10151008901000033).

Contribution statement

YB contributed to the study design, data interpretation, drafting the article, and final approval of the version to be published. WW contributed to the acquisition of data, drafting the article and approval of the final version. JS contributed to the study design, acquisition of data, drafting the article and approval of the final version. HL contributed the study design, data analysis, drafting the article and approval of the final version. WY, YC, ST, SC, MC, and SS contributed to acquisition of data, drafting the article and approval of the final version. QG contributed to the acquisition of data, drafting the article and approval of the final version. DZ contributed to the study design, acquisition of data, revision of the manuscript and final approval of the version to be published. JW contributed to the study design, acquisition of data, revision of the manuscript and final approval of the version to be published.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Bi, Jianping Weng or Dalong Zhu.

Additional information

Yan Bi, Wenjun Wu, Junfeng Shi and Hua Liang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 54 kb)

ESM Table 2

(PDF 8 kb)

ESM Table 3

(PDF 27 kb)

ESM Fig. 1

(PDF 104 kb)

ESM Fig. 2

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, Y., Wu, W., Shi, J. et al. Role for sterol regulatory element binding protein-1c activation in mediating skeletal muscle insulin resistance via repression of rat insulin receptor substrate-1 transcription. Diabetologia 57, 592–602 (2014). https://doi.org/10.1007/s00125-013-3136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-013-3136-1

Keywords

Navigation