Skip to main content
Log in

Mining genes regulating root system architecture in maize based on data integration analysis

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new strategy that integrated multiple public data resources was established to construct root gene co-expression network and mine genes regulating root system architecture in maize. A root gene co-expression network, containing 13,874 genes, was constructed. A total of 53 root hub genes and 16 priority root candidate genes were identified. One priority root candidate was further functionally verified using overexpression transgenic maize lines.

Abstract

Root system architecture (RSA) is crucial for crops productivity and stress tolerance. In maize, few RSA genes are functionally cloned, and effective discovery of RSA genes remains a great of challenge. In this work, we established a strategy to mine maize RSA genes by integrating functionally characterized root genes, root transcriptome, weighted gene co-expression network analysis (WGCNA) and genome-wide association analysis (GWAS) of RSA traits based on public data resources. A total of 589 maize root genes were collected by searching well-characterized root genes in maize or homologous genes of other species. We performed WGCNA to construct a maize root gene co-expression network containing 13874 genes based on public available root transcriptome data, and further discovered the 53 hub genes related to root traits. In addition, by the prediction function of obtained root gene co-expression network, a total of 1082 new root candidate genes were explored. By further overlapping the obtained new root candidate gene with the root-related GWAS of RSA candidate genes, 16 priority root candidate genes were identified. Finally, a priority root candidate gene, Zm00001d023379 (encodes pyruvate kinase 2), was validated to modulate root open angle and shoot-borne roots number using its overexpression transgenic lines. Our results develop an integration analysis method for effectively exploring regulatory genes of RSA in maize and open a new avenue to mine the candidate genes underlying complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data supporting the findings of this work are available within the paper and its Supplementary Information files.

References

  • Andorf CM, Cannon EK, Portwood JL 2nd, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ (2016) MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 44:D1195–D1201

    CAS  PubMed  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol Biol 1533:1–31

    CAS  PubMed  Google Scholar 

  • Bray AL, Topp CN (2018) The quantitative genetic control of root architecture in maize. Plant Cell Physiol 59:1919–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, Fang S, Cao W, Yi L, Zhao Y, Kong L (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49:W317–W325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Chen F, Mi G, Zhang F, Maurer HP, Liu W, Reif JC, Yuan L (2012) Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor Appl Genet 125:1313–1324

    PubMed  Google Scholar 

  • Cai Y, Li S, Jiao G, Sheng Z, Wu Y, Shao G, Xie L, Peng C, Xu J, Tang S, Wei X, Hu P (2018) OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol J 16:1878–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    PubMed  PubMed Central  Google Scholar 

  • Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: pup1 sequence to application. Plant Physiol 156:1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombi T, Kirchgessner N, Le Marié CA, York LM, Lynch JP, Hund A (2015) Next generation shovelomics: set up a tent and rest. Plant Soil 388:1–20

    CAS  Google Scholar 

  • Conte MG, Gaillard S, Lanau N, Rouard M, Périn C (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36:D991–D998

    CAS  PubMed  Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    PubMed  Google Scholar 

  • Ding L, Pandey S, Assmann SM (2008) Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53:248–263

    CAS  PubMed  Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74

    CAS  PubMed  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    CAS  PubMed  Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67:4545–4557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165:1035–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Liu X, Pan Q, Mi G, Chen F, Yuan L (2020) Combined physiological, transcriptome, and genetic analysis reveals a molecular network of nitrogen remobilization in maize. J Exp Bot 71:5061–5073

    CAS  PubMed  Google Scholar 

  • Gu R, Chen F, Long L, Cai H, Liu Z, Yang J, Wang L, Li H, Li J, Liu W, Mi G, Zhang F, Yuan L (2016) Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Genet Genom 43:663–672

    Google Scholar 

  • Guo J, Chen L, Li Y, Shi Y, Song Y, Zhang D, Li Y, Wang T, Yang D, Li C (2018) Meta-QTL analysis and identification of candidate genes related to root traits in maize. Euphytica 214:223

    Google Scholar 

  • Gupta A, Singh M, Laxmi A (2015) Interaction between glucose and brassinosteroid during the regulation of lateral root development in arabidopsis. Plant Physiol 168:307–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D’Eustachio P, Fabregat A, Jiao Y, Keays M, Lee YK, Kumari S, Mulvaney J, Olson A, Preece J, Stein J, Wei S, Weiser J, Huerta L, Petryszak R, Kersey P, Stein LD, Ware D, Jaiswal P (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol 7–8:10–15

    PubMed  PubMed Central  Google Scholar 

  • Hammer GL, Dong ZS, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci 49:299–312

    Google Scholar 

  • Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB, Xie GS (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184:63–74

    CAS  PubMed  Google Scholar 

  • Hochholdinger F, Yu P, Marcon C (2018) Genetic control of root system development in maize. Trends Plant Sci 23:79–88

    CAS  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Hostetler AN, Khangura RS, Dilkes BP, Sparks EE (2021) Bracing for sustainable agriculture: the development and function of brace roots in members of poaceae. Curr Opin Plant Biol 59:101985

    CAS  PubMed  Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    CAS  Google Scholar 

  • Irish VF, Benfey PN (2004) Beyond arabidopsis. Translational biology meets evolutionary developmental biology. Plant Physiol 135:611–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Zhang Y, Wang J, Li Y, Chen X, Yang L, Zhang J, Li C, Li L, Ur Rehman S, Reynolds MP, Zhang L, Zhang X, Mao X, Jing R (2022) TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. J Exp Bot 73:6678–6696

    CAS  PubMed  Google Scholar 

  • Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in arabidopsis. Proc Natl Acad Sci USA 109:11217–11221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor crown rootless5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484

    CAS  PubMed  Google Scholar 

  • Kushwah S, Laxmi A (2017) The interaction between glucose and cytokinin signaling in controlling arabidopsis thaliana seedling root growth and development. Plant Signal Behav 12:e1312241

    PubMed  PubMed Central  Google Scholar 

  • Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562

    CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Google Scholar 

  • Li P, Chen F, Cai H, Liu J, Pan Q, Liu Z, Gu R, Mi G, Zhang F, Yuan L (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66:3175–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen F, Li Y, Li P, Wang Y, Mi G, Yuan L (2019a) ZmRAP2.7, an AP2 transcription factor, is involved in maize brace roots development. Front Plant Sci 10:820. https://doi.org/10.3389/fpls.2019.00820

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu X, Chen R, Tian J, Fan Y, Zhou X (2019b) Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity. BMC Plant Biol 19:584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Fan Y, Yin S, Wang Y, Wang H, Xu Y, Yang Z, Xu C (2020) Multi-environment QTL mapping of crown root traits in a maize RIL population. Crop J 8:645–654

    Google Scholar 

  • Li P, Yang X, Wang H, Pan T, Wang Y, Xu Y, Xu C, Yang Z (2021) Genetic control of root plasticity in response to salt stress in maize. Theor Appl Genet 134:1475–1492

    CAS  PubMed  Google Scholar 

  • Liang T, Qing C, Liu P, Zou C, Yuan G, Pan G, Shen Y, Ma L (2022) Joint GWAS and WGCNA uncover the genetic control of calcium accumulation under salt treatment in maize seedlings. Physiol Plant 174(1):e13606

    CAS  PubMed  Google Scholar 

  • Liu S, Song F, Liu F, Zhu X, Xu H (2012) Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.). J Agric Sci 4:182–189

    Google Scholar 

  • Liu S, Zenda T, Dong A, Yang Y, Wang N, Duan H (2021) Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific drought stress responses in maize. Front Genet 12:645443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang Y, Wang R, Cui R, Xu H, Sun C, Wang J, Zhang H, Chen H, Zhang D (2022) GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Plant Sci 315:111148

    CAS  PubMed  Google Scholar 

  • Lopez-Reynoso JJ, Hallauer AR (1998) Twenty-seven cycles of divergent mass selection for ear length in maize. Crop Sci 38:1099–1107

    Google Scholar 

  • Lv Y, Xu L, Dossa K, Zhou K, Zhu M, Xie H, Tang S, Yu Y, Guo X, Zhou B (2019) Identification of putative drought-responsive genes in rice using gene co-expression analysis. Bioinformation 15:480–489

    PubMed  PubMed Central  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Chimungu JG, Brown KM (2014) Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. J Exp Bot 65:6155–6166

    CAS  PubMed  Google Scholar 

  • Ma L, Zhang M, Chen J, Qing C, He S, Zou C, Yuan G, Yang C, Peng H, Pan G, Lübberstedt T, Shen Y (2021) GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet 134:3305–3318

    CAS  PubMed  Google Scholar 

  • Mi G, Chen F, Yuan L, Zhang F (2016) Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv Agron 139:73–97

    Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling arabidopsis thaliana seedlings root growth and development. PLoS ONE 4:e4502

    PubMed  PubMed Central  Google Scholar 

  • Mock JJ, Pearce RB (1975) An ideotype of maize. Euphytica 24:613–623

    Google Scholar 

  • Moisseyev G, Park K, Cui A, Freitas D, Rajagopal D, Konda AR, Martin-Olenski M, Mcham M, Liu K, Du Q, Schnable JC, Moriyama EN, Cahoon EB, Zhang C (2020) RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database (Oxford) 2020:baaa038

  • Mu X, Chen F, Wu Q, Chen Q, Wang J, Yuan L, Mi G (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63:55–61

    CAS  Google Scholar 

  • Nepolean T, Kaul J, Mukri G, Mittal S (2018) Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Front Plant Sci 9:361

    PubMed  PubMed Central  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiser L, Subramaniam S, Li D, Huala E (2017) Using the Arabidopsis information resource (TAIR) to find information about arabidopsis genes. Curr Protoc Bioinformatics 60:1.11.1-1.11.45

    PubMed  Google Scholar 

  • Saengwilai P, Tian X, Lynch JP (2014) Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol 166:581–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago R, Reid LM, Zhu X, Butrón A, Malvar RA (2010) Gibberella stalk rot (Fusarium graminearum) resistance of maize inbreds and their F1 hybrids and their potential for use in resistance breeding programs. Plant Breed 129:454–456

    Google Scholar 

  • Schaefer RJ, Michno JM, Jeffers J, Hoekenga O, Dilkes B, Baxter I, Myers CL (2018) Integrating coexpression networks with GWAS to prioritize causal genes in maize. Plant Cell 30:2922–2942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider HM, Klein SP, Hanlon MT, Nord EA, Kaeppler S, Brown KM, Warry A, Bhosale R, Lynch JP (2020) Genetic control of root architectural plasticity in maize. J Exp Bot 71:3185–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhu JK (2002) SOS4, a pyridoxal kinase gene, is required for root hair development in arabidopsis. Plant Physiol 129:585–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Gupta A, Laxmi A (2014) Glucose control of root growth direction in arabidopsis thaliana. J Exp Bot 65:2981–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamp P, Kiel C (1992) Root morphology of maize and its relationship to root lodging. J Agron Crop Sci 168:113–118

    Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    CAS  PubMed  Google Scholar 

  • Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM (2016) An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome. https://doi.org/10.3835/plantgenome2015.04.0025

    Article  PubMed  Google Scholar 

  • Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in arabidopsis. Plant Physiol 150:722–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Sato Y, Wu S, Kang B-H, McCarty DR (2015) Conserved functions of the mate transporter big embryo1 in regulation of lateral organ size and initiation rate. Plant Cell 27:2288–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson-Wagner R, Briskine R, Schaefer R, Hufford MB, Ross-Ibarra J, Myers CL, Tiffin P, Springer NM (2012) Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci USA 109:11878–21183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) Agrigo v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Maccaferri M, Sanguineti MC, Landi P, Tuberosa R, Giuliani S, Salvi S (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    CAS  Google Scholar 

  • Vanhees DJ, Loades KW, Bengough AG, Mooney SJ, Lynch JP (2020) Root anatomical traits contribute to deeper rooting of maize under compacted field conditions. J Exp Bot 71:4243–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Xu S (2019) Statistical power in genome-wide association studies and quantitative trait locus mapping. Heredity 123:287–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Pei L, Jin Z, Zhang K, Zhang J (2017) Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS ONE 12:e0176538

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun H, Wang H, Yang X, Xu Y, Yang Z, Xu C, Li P (2021) Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. J Exp Bot 72:4773–4795

    CAS  PubMed  Google Scholar 

  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Lyu J, Li Q, Liu H, Wang D, Zhang M, Springer NM, Ross-Ibarra J, Yang J (2020) Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat Commun 11:5539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Google Scholar 

  • Yao W, Li G, Yu Y, Ouyang Y (2018) funRiceGenes dataset for comprehensive understanding and application of rice functional genes. Gigascience 7:1–9

    PubMed  Google Scholar 

  • Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT (2014) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in arabidopsis. Plant Cell Environ 37:1338–1350

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xiao W, Luo L, Pang J, Rong W, He C (2012) Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. Planta 235:25–38

    CAS  PubMed  Google Scholar 

  • Zhu M, Xie H, Wei X, Dossa K, Yu Y, Hui S, Tang G, Zeng X, Yu Y, Hu P, Wang J (2019) WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes 10:719

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the National Key Research and Development Program of China (grant no. 2021YFF1000500) and the National Natural Science Foundation of China (grant no. 31972485).

Author information

Authors and Affiliations

Authors

Contributions

LY, FC and GM designed the experiments; KH and ZZ performed the experiments; KH and WR performed data analysis; LC generated maize transgenic lines; ZC and QP provided the scientific advice; KH prepared and wrote the article and LY revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lixing Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Thomas Lubberstedt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 13907 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Zhao, Z., Ren, W. et al. Mining genes regulating root system architecture in maize based on data integration analysis. Theor Appl Genet 136, 127 (2023). https://doi.org/10.1007/s00122-023-04376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04376-0

Navigation