Skip to main content
Log in

The mutation of CaCKI1 causes seedless fruits in chili pepper (Capsicum annuum)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The seedless mutant tn-1 in chili pepper is caused by a mutation in CaCKI1 (CA12g21620), which encodes histidine kinase involving female gametophyte development. An amino acid insertion in the receiver domain of CaCKI1 may be the mutation responsible for tn-1 .

Abstract

Seedlessness is a desirable trait in fruit crops because the removal of seeds is a troublesome step for consumers and processing industries. However, little knowledge is available to develop seedless chili peppers. In a previous study, a chili pepper mutant tn-1, which stably produces seedless fruits, was isolated. In this study, we report characterization of tn-1 and identification of the causative gene. Although pollen germination was normal, confocal laser microscopy observations revealed deficiency in embryo sac development in tn-1. By marker analysis, the tn-1 locus was narrowed down to a 313 kb region on chromosome 12. Further analysis combined with mapping-by-sequencing identified CA12g21620, which encodes histidine kinase as a candidate gene. Phylogenetic analysis revealed CA12g21620 was the homolog of Arabidopsis CKI1 (Cytokinin Independent 1), which plays an important role in female gametophyte development, and CA12g21620 was designated as CaCKI1. Sequence analysis revealed that tn-1 has a 3-bp insertion in the 6th exon resulting in one lysine (K) residue insertion in receiver domain of CaCKI1, and the sequence nearby the insertion is widely conserved among CKI1 orthologs in various plants. This suggested that one K residue insertion may reduce the phosphorylation relay downstream of CaCKI1 and impair normal development of female gametophyte, resulting in seedless fruits production in tn-1. Furthermore, we demonstrated that virus-induced gene silencing of CaCKI1 reduced normally developed female gametophyte in chili pepper. This study describes the significant role of CaCKI1 in seed development in chili pepper and the possibility of developing seedless cultivars using its mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Relevant data are included in this paper and its associated Supplementary Information.

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassel GW, Mullen RT, Bewley JD (2008) Procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J Exp Bot 59:585–593

    Article  CAS  PubMed  Google Scholar 

  • Beraldi D, Picarella ME, Soressi GP, Mazzucato A (2004) Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theor Appl Genet 108:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers:vegetable and spice capsicums. CABI Publishing, New York

    Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Article  Google Scholar 

  • D’Agostino IB, Kieber JJ (1999) Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem Sci 24:452–456

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Dani RG, Kumar PA (2006) Current trends in the genetic engineering of vegetable crops. Sci Hortic 107:215–225

    Article  CAS  Google Scholar 

  • Daskalov S, Poulos JM (1994) Updated Capsicum gene list. Capsicum Eggplant Nswl 13:16–26

    Google Scholar 

  • Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, Yang WC, Liang Y, Zuo J (2010) Arabidopsis histidine kinase CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fos M, Nuez F, Garcia-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George AP, Mowat AD, Collins RJ, Morley-Bunker M (1997) The pattern and control of reproductive development in non-astringent persimmon (Diospyros kaki L.). Sci Hortic 70:93–122

    Article  Google Scholar 

  • Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser RGF, Heusden AW (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet 116:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto S, Yoshioka T, Ohta S, Kita M, Hamada H, Shimizu T (2018) QTL mapping of male sterility and transmission pattern in progeny of Satsuma mandarin. PLoS ONE 13:e0200844

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G (2016) Genome–wide identification and expression analysis of two–component system genes in tomato. Int J Mol Sci 17:1204

    Article  PubMed  PubMed Central  Google Scholar 

  • Hejátko J, Pernisová M, Eneva T, Palme K, Brzobohatý B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genom 269:443–453

    Article  Google Scholar 

  • Hejátko J, Ryu H, Kim GT, Dobešova R, Choi S, Choi SM, Souček P, Horak J, Pekarova B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21:2008–2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP (2021) Histidine kinases: diverse functions in plant development and responses to environmental. Annu Rev Plant Biol 72:297–323

    Article  CAS  PubMed  Google Scholar 

  • Honda I, Matsunaga H, Kikuchi K, Matsuo S, Fukuda M (2012) Identification of pepper (Capsicum annuum L.) accessions with large or small fruit that have a high degree of parthenocarpy. Sci Hortic 135:68–70

    Article  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two–component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin Signaling Networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Joldersma D, Liu Z (2018) The making of virgin fruit: the molecular and genetic basis of parthenocarpy. J Ex Bot 69:955–962

    Article  CAS  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Sharma P (2021) Recent advances in cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 97:3–23

    Article  Google Scholar 

  • Kihara H (1951) Triploid watermelons. Proc Am Soc Hort Sci 58:217–230

    Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park M, Jeong ES, Lee JM, Choi D (2017) Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Matsuo S, Miyatake K, Endo M, Urashimo S, Kawanishi T, Negoro S, Shimakoshi S, Fukuoka H (2020) Loss of function of the Pad-1aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proc Natl Acad Sci USA 117:12784–12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    Article  CAS  PubMed  Google Scholar 

  • Miyatake K, Takeo Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, Fukuoka H (2012) Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). Theor Appl Genet 124:1403–1413

    Article  PubMed  Google Scholar 

  • Pekárová B, Klumpler T, Třísková O, Horák J, Jansen S, Dopitová R, Borkovcová P, Papoušková V, Nejedlá E, Sklenář V, Marek J, Žídek L, Hejátko J (2011) Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J 67:827–839

    Article  PubMed  Google Scholar 

  • Pike LM, Peterson CE (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica 18:101–105

    Article  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci 99:15800–15805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prolaram B, Christopher T, Subhash K (1990) Seedless fruit mutant in Capsicum. Capsicum Nswl 89:45–46

    Google Scholar 

  • Quinet M, Bataille G, Dobrev PI, Capel C, Gómez P, Capel J, Lutts S, Motyka V, Angosto T, Lozano R (2014) Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene. J Exp Bot 65:2243–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao PG, Prasad BVG, Kumar TK, Tirupathamma TL, Roshni P, Tejaswini T (2018) Breeding for climate resilient parthenocarpic vegetables. Int J Curr Microbiol App Sci 7:2473–2492

    Article  Google Scholar 

  • Reig C, Martínez-Fuentes A, Mesejo C, Agustí M (2018) Hormonal control of parthenocarpic fruit set in ‘Rojo Brillante’ persimmon (Diospyros kaki Thunb.). J Plant Physiol 231:96–104

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki Y, Hao S, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei Z, Zhong S, Giovannoni JJ, Rose JKC, Okabe Y, HetaY EH, Ariizumi T (2015) Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J 83:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sogi DS, Bhatia R, Garg SK, Bawa AS (2005) Biological evaluation of tomato waste seed meals and protein concentrate. Food Chem 89:53–56

    Article  CAS  Google Scholar 

  • Subbaraya U, Rajendran S, Simeon S, Suthanthiram B, Saraswathi MS (2020) Unravelling the regulatory network of transcription factors in parthenocarpy. Sci Hortic 261:108920

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Takisawa R, Takayuki Maruyama T, Nakazaki T, Kataoka K, Saito H, Koeda S, Nunome T, Fukuoka H, Kitajima A (2017) Parthenocarpy in the tomato (Solanum lycopersicum L.) cultivar ‘MPK-1’ is controlled by a novel parthenocarpic gene. Hort J 86:487–492

    Article  CAS  Google Scholar 

  • Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A (2018) The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC Plant Biol 18:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Mitani A, Shimizu N, Goto T, Yoshida Y, Yasuba K (2021) Characterization and bulk segregant analysis of a novel seedless mutant tn-1 of chili pepper (Capsicum annuum). Sci Hortic 276:109729

    Article  CAS  Google Scholar 

  • Tanaka Y, Yokota M, Goto N, Goto T, Yoshida Y, Yasuba K, Ohno S, Doi M (2022) Morphological and gene expression characterization of maf-1, a floral chili pepper mutant caused by a nonsense mutation in CaLFY. Mol Breed 42:32

    Article  CAS  Google Scholar 

  • Tiwari A, Dassen H, Heuvelink E (2007) Selection of sweet pepper (Capsicum annuum) genotypes for parthenocarpic fruit growth. Acta Hortic 761:135–140

    Article  Google Scholar 

  • Tiwari A, Vivian-Smith A, Voorrips RE, Habets ME, Xue LB, Offringa R, Heuvelink E (2011) Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC Plant Biol 11:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  CAS  PubMed  Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in Citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hort Sci 133:117–126

    Article  Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Bosland PW (2006) The Genes of Capsicum Hort Sci 41:1169–1187

    CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki A, Hosokawa M (2019) Increased percentage of fruit set of F1 hybrid of Capsicum chinense during high–temperature period. Sci Hortic 243:421–427

    Article  Google Scholar 

  • Yuan L, Liu Z, Song X, Johnson C, Yu X, Sundaresan V (2016) The CKI1 histidine kinase specifies the female gametic precursor of the endosperm. Dev Cell 37:34–46

    Article  CAS  PubMed  Google Scholar 

  • Zhoua X, Wakana A, Kim JH, Sakai K, Kajiwara K, Mizunoe Y (2018) Parthenocarpy in Citrus accessions with special focus on relatives of Kunenbo (C. nobilis Lour. var. kunep Tanaka). Sci Hortic 232:29–39

    Article  Google Scholar 

Download references

Acknowledgements

Computations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics. We would like to express our gratitude to Dr. Yukiko Yasui for providing a valuable opportunity to initiate the CLSM observations. TRV1 (Addgene plasmid # 148968) and TRV2(Addgene plasmid # 148969) vectors were gifts from Savithramma Dinesh-Kumar. The NMH seeds were kindly provided by Dr. Sota Koeda (Kindai University).

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research (B) (21H02187).

Author information

Authors and Affiliations

Authors

Contributions

YT designed the research and performed mapping-by-sequencing analysis. TM conducted identification of the tn-1 gene, sequence analysis of CaCKI1, gene expression analysis, and microscopy analysis of ovule structures. YM participated in genetic analysis. HK and AY conducted the pollen germination tests. SY participated in CLSM observations on ovule structures. SO assisted with the development of DNA markers using genome resequencing data. MD assisted with the cultivation of plant materials and contributed in the interpretation of CaCKI1 function. TM wrote the draft of the manuscript, and YT edited it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshiyuki Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Esther van der Knaap.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1 Cross-section of fruits obtained from artificial pollination tests (JPG 146 KB)

122_2023_4342_MOESM2_ESM.jpeg

Figure S2 Flow of the mapping-by-sequencing approach for identification of the causative mutation in the tn-1 mutant (JPEG 579 KB)

122_2023_4342_MOESM3_ESM.jpeg

Figure S3 ΔSNP-index plots across the whole genome to identify candidate a mutation of tn-1. ΔSNP-index was calculated as: ΔSNP-index = tn-1-bulk SNP-index – WT-bulk SNP index (SNP-index indicates the ratio of tn-1 type reads per total reads). Red plots show 7 SNPs with high ΔSNP-index (>0.7) (JPEG 548 KB)

122_2023_4342_MOESM4_ESM.jpg

Figure S4 Comparison of CaCKI1 gene structures. YM, tn-1, CM334 (annotated in CM334 v.1.55) and Zunla (annotated in Zunla v.2.0) from top (JPG 58 KB)

Figure S5 Alignment of deduced amino acid sequences of CaCKI1 and its homologues (JPG 396 KB)

122_2023_4342_MOESM6_ESM.jpg

Figure S6 Predicted 3D structure of the receiver domain of CaCKI1. A green arrow indicates the 1 amino acid (K) insertion in tn-1. Yellow arrows indicate different structures between WT and tn-1 (JPG 98 KB)

Figure S7 CLSM observation on ovules derived from TRV2-CaAN2-CaCKI1 plants. Bar = 50 μm (JPG 147 KB)

Figure S8 Cross-section of fruits in CaCKI1 silenced plants. Bar =1 cm (JPG 184 KB)

Supplementary file9 (PDF 72 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maki, T., Kusaka, H., Matsumoto, Y. et al. The mutation of CaCKI1 causes seedless fruits in chili pepper (Capsicum annuum). Theor Appl Genet 136, 85 (2023). https://doi.org/10.1007/s00122-023-04342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04342-w

Navigation