Skip to main content
Log in

Genetic networks underlying salinity tolerance in wheat uncovered with genome-wide analyses and selective sweeps

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes.

Abstract

Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the phenotypic is available as supplementary material, and genotypic data will be made available on the reasonable request to corresponding author.

References

  • Aberkane H, Payne T, Kishi M, Smale M, Amri A, Jamora N (2020) Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat. Food Secur 12:1017–1033

    Article  Google Scholar 

  • Afzal F, Li H, Gul A, Subhani A, Ali A, Mujeeb-Kazi A et al (2019) Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3: Genes Genomes, Genet 9:1957–1973

    Article  CAS  Google Scholar 

  • Akutsu T, Miyano S, Kuhara S (2000) Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J Comput Biol 7(3–4):331–343

    Article  CAS  PubMed  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B (2018) Mapping of novel salt tolerance QTL in an Excalibur× Kukri doubled haploid wheat population. Theor Appl Genet 131(10):2179–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Baenziger PS, Waters BM, Poudel R, Belamkar V, Poland J et al (2018a) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19:3237

    Article  PubMed Central  CAS  Google Scholar 

  • Bhatta M, Morgounov A, Belamkar V, Baenziger PS (2018b) Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. Int J Mol Sci 19:3011

    Article  PubMed Central  CAS  Google Scholar 

  • Bhatta M, Morgounov A, Belamkar V, Wegulo SN, Dababat AA, Erginbas-Orakci G et al (2019) Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. Int J Mol Sci 20:3667

    Article  CAS  PubMed Central  Google Scholar 

  • Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22:437–446

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 4:29–40

    Google Scholar 

  • Chen GB, Lee SH, Zhu ZX, Benyamin B, Robinson MR (2016) EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Heredity 117(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TS, Wu J, Wang S, Cai J, Zhong Q, Fu B (2017) Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Crop J 5:355–362

    Article  Google Scholar 

  • Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J et al (2016) Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun 7:1–14

    Article  CAS  Google Scholar 

  • D’Haeseleer P, Wen X, Fuhrman S, Somogyi R (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 4:41–52

    Google Scholar 

  • Das MK, Bai G, Mujeeb-Kazi A, Rajaram S (2016) Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet Resour Crop Evol 63:1285–1296

    Article  CAS  Google Scholar 

  • Dedov A, Nazarov V (2015) Processed nonwoven needle punched materials with increased strength. Fibre Chem 47:121–125

    Article  CAS  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Tiwari R, Sheoran S (2013) Laboratory manual: ICAR-CIMMYT molecular breeding course in wheat. ICAR

  • Elshire R, Glaubitz J, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R et al (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:1–14

    Article  CAS  Google Scholar 

  • FAOSTAT F (2019) Food and agriculture organization of the United Nations-Statistic Division https://www.fao.org/faostat/en/# data.QC

  • Friedman N, Linial M, Nachman L, Pe’eré D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121(5):877–894

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Taylor J, Rongala J, Oldach K (2014) A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS ONE 9(6):e98845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Hailu F, Merker A (2008) Variation in gluten strength and yellow pigment in Ethiopian tetraploid wheat germplasm. Genet Resour Crop Evol 55:277–285

    Article  Google Scholar 

  • Hartemink A. J., Gifford D. K., Jaakkola T. S., Young R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 422–433.

  • Hasanuzzaman M, Nahar K, Alam M, Bhowmik PC, Hossain M, Rahman MM et al (2014) Potential use of halophytes to remediate saline soils. BioMed Res Intl 2014

  • Hu P, Zheng Q, Luo Q, Teng W, Li H, Li B et al (2021) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol 21:1–20

    Article  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518):929–934

    Article  CAS  PubMed  Google Scholar 

  • Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific symposium on biocomputing, 175–186

  • Jafarzadeh J, Bonnett D, Jannink J-L, Akdemir D, Dreisigacker S, Sorrells ME (2016) Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11:e0162860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1–26

    Article  CAS  Google Scholar 

  • Khalid M, Afzal, F., Gul, A., Amir, R., Subhani, A., Ahmed, Z., et al. (2019). Molecular Characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front Plant Sci 10

  • Khan Z, Qazi J, Rasheed A, Mujeeb-Kazi A (2016) Diversity in D-genome synthetic hexaploid wheat association panel for seedling emergence traits under salinity stress. Plant Genet Resour 15:488–495

    Article  CAS  Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132

    Article  Google Scholar 

  • Law C, Worland A (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen GB, Rasheed A, Li DL, Sonder K, Zavala Espinosa C, Li H (2019) Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol 28(15):3544–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li D, Espinosa CZ, Pastor VT, Rasheed A, Rojas NP, Li H (2021) Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT’s maize inbred lines. J Exp Bot 72(4):1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Lhundrup N, Guo GG, Dol K, Chen PP, Gao LY, Li HH (2020) Characterization of genetic diversity and genome-wide association mapping of three agronomic traits in Qingke Barley (Hordeum vulgare L) in the Qinghai-Tibet Plateau. Front Genet 11:638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 3:18–29

    Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rasheed A, He Z, Imtiaz M, Arif A, Mahmood T et al (2019) Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor Appl Genet 132:2509–2523

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li H, Wen Z, Fan X, Li Y, Guan R et al (2017) Comparison of genetic diversity between Chinese and American soybean (Glycine max L.) accessions revealed by high-density SNPs. Front Plant Sci 8:2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes M, Reynolds M, Draye X, Foulkes J, Hawkesford M, Murchie E (2010) Dissecting drought adaptation into its phenotypic and genetic components in wheat. Asp Appl Biol 105:2010

    Google Scholar 

  • Morgounov A, Abugalieva A, Akan K, Akin B, Baenziger S, Bhatta M et al (2018) High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resour 16:273

    Article  CAS  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Gul A, Farooq M, Rizwan S, Ahmad I (2008) Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res 59:391–398

    Article  Google Scholar 

  • Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P et al (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187

    Article  Google Scholar 

  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE 12:e0171692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N et al (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Article  Google Scholar 

  • Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T et al (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835

    Article  PubMed  Google Scholar 

  • Pérez P, Campos GDL (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK et al (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D et al (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  CAS  PubMed  Google Scholar 

  • Rosyara U, Kishii M, Payne T, Sansaloni CP, Singh RP, Braun HJ et al (2019) Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci Rep 9:12355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmulevich I, Dougherty ER, Zhang W (2002) Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 18(10):1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Bovill J, Afzal I, Hayes JE, Roy SJ, Tester M, Collins NC (2013) HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: evidence from fine mapping and expression analysis. Planta 237(4):1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Syed A, Sarwar G, Shah SH, Muhammad S (2021) Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Commun Soil Sci Plant Anal 52:183–200

    Article  CAS  Google Scholar 

  • Trethowan R, Reynolds M, Sayre K, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:405–413

    Article  Google Scholar 

  • Turner S. D. (2014). qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv, 005165.

  • Von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–192

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36–43

    Article  Google Scholar 

  • Wahde M, Hertz J (2000) Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55(1–3):129–136

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Cui Y, He Y, Xiong Q, Qian L, Tong C et al (2017) A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. J Exp Bot 68:4791–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf PJ, Wang Y (2000) A fuzzy logic approach to analyzing gene expression data. Physiol Genom 3(1):9–15

    Article  CAS  Google Scholar 

  • Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H et al (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci 112:E5411–E5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhao L, Zhang H, Yang Z, Wang H, Wen S, Liu B (2014) Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci 111(32):11882–11887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Zhao D, Chen X, Zhang Y, Wang J (2018) Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.). Crop J 6:353–365

    Article  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9:e105593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44(7):821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Shabala S, Shabala L, Fan Y, Zhou M (2016) Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci 202:115–124

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Science Foundation of China (32022064), and the Project of Hainan Yazhou Bay Seed Lab (B21HJ0223).

Author information

Authors and Affiliations

Authors

Contributions

HL, AR, and ZH conceived and designed the study; DS, HL, and AR analyzed the data and wrote the manuscript; AR and XX generated KASP marker data; MT performed the salinity experiments; JP generated GBS data; MA, MS, AA, and MQW performed field experiments at Pakistan; MA, RT, FCO, JP, MT, and ZH edited the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Awais Rasheed or Huihui Li.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Communicated by Philomin Juliana.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7829 KB)

Supplementary file2 (XLSX 190 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, D., Ali, M., Shahid, M. et al. Genetic networks underlying salinity tolerance in wheat uncovered with genome-wide analyses and selective sweeps. Theor Appl Genet 135, 2925–2941 (2022). https://doi.org/10.1007/s00122-022-04153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04153-5

Navigation