Skip to main content
Log in

OsWRKY115 on qCT7 links to cold tolerance in rice

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

qCT7, a novel QTL for increasing seedling cold tolerance in rice, was fine-mapped to a 70.9-kb region on chromosome 7, and key OsWRKY115 was identified in transgenic plants.

Abstract

Cold stress caused by underground cold-water irrigation seriously limits rice productivity. We systemically measured the cold-responsive traits of 2,570 F2 individuals derived from two widely cultivated rice cultivars, Kong-Yu-131 and Dong-Nong-422, to identify the major genomic regions associated with cold tolerance. A novel major QTL, qCT7, was mapped on chromosome 7 associated with the cold tolerance and survival, using whole-genome re-sequencing with bulked segregant analysis. Local QTL linkage analysis with F2 and fine mapping with recombinant plant revealed a 70.9-kb core region on qCT7 encoding 13 protein-coding genes. Only the LOC_Os07g27670 expression level encoding the OsWRKY115 transcription factor on the locus was specifically induced by cold stress in the cold-tolerant cultivar. Moreover, haplotype analysis and the KASP8 marker indicated that OsWRKY115 was significantly associated with cold tolerance. Overexpression and knockout of OsWRKY115 significantly affected cold tolerance in seedlings. Our experiments identified OsWRKY115 as a novel regulatory gene associated with cold response in rice, and the Kong-Yu-131 allele with specific cold-induced expression may be an important molecular variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andaya V, Tai T (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  CAS  Google Scholar 

  • Chen W, Li W (2005) Mapping of QTL conferring cold tolerance at early seedling stage of rice by molecular markers. Wuhan Zhi Wu Xue Yan Jiu 23:116–120

    Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Et Biophys Acta-Gene Regul Mech 1819:120–128

    Article  CAS  Google Scholar 

  • Cheng LR, Wang JM, Uzokwe V, Meng LJ, Wang Y, Sun Y, Zhu LH, Xu JL, Li ZK (2012) Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryza sativa L.). J Integr Agr 11:359–367

    Article  Google Scholar 

  • Dai LY, Lin XH, Ye CR, Ise KZ, Saito K, Kato A, Xu FR, Yu TQ, Zhang DP (2004) Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breed Sci 54:253–258

    Article  CAS  Google Scholar 

  • Dong X, Yang Y, Zhang Z, Xiao Z, Bai X, Gao J, Hur Y, Hao S, He F (2019) Genome-wide identification of WRKY genes and their response to cold stress in coffea canephora. Forests. https://doi.org/10.3390/f10040335

    Article  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song KM, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamoto T, Nishio T (2016) Detection of QTLs for cold tolerance of rice cultivar “Kuchum” and effect of QTL pyramiding. Theor Appl Genet 129:631–640

    Article  CAS  PubMed  Google Scholar 

  • Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, Guo Z (2019) Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 685:96–105

    Article  CAS  PubMed  Google Scholar 

  • Han L, Qiao Y, Zhang S, Zhang Y, Cao G, Kim J, Lee K, Koh H (2007) Identification of quantitative trait loci for cold response of seedling vigor traits in rice. J Genet Genomics 34:239–246

    Article  CAS  PubMed  Google Scholar 

  • Han B, Ma X, Cui D, Wang Y, Geng L, Cao G, Zhang H, Han L (2020) Comprehensive evaluation and analysis of the mechanism of cold tolerance based on the transcriptome of weedy rice seedlings. Rice (new York, NY) 13:12

    Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou MY, Wang CM, Jiang L, Wan JM, Yasui H, Yoshimura A (2004) Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.). Yi Chuan Xue Bao 31:701–706

    CAS  PubMed  Google Scholar 

  • IRRI I (2002) Standard evaluation system for rice: International Rice Research Institute. PO Box 933:1099

  • Jena KK, Kim SM, Suh JP, Yang CI, Kim YG (2012) Identification of cold-tolerant breeding lines by quantitative trait loci associated with cold tolerance in rice. Crop Sci 52:517–523

    Article  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (new York, NY) 6:4

    Google Scholar 

  • Kim SM, Suh JP, Lee CK, Lee JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genomics 289:333–343

    Article  CAS  PubMed  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang Z-X, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284:45–54

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K (2011) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a ga biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang M, Yang L, Mao X, Li J, Li L, Wang J, Liu H, Zheng H, Li Z, Zhao H, Li X, Lei L, Sun J, Zou D (2021) OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice (Oryza sativa L.). Crop J 9:1003–1017

    Article  Google Scholar 

  • Liu F, Xu W, Song Q, Tan L, Liu J, Zhu Z, Fu Y, Su Z, Sun C (2013) Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Mol Plant 6:757–767

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi MR, Zhao B, Xiao G, Wang X, Chu C (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9:3302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Schläppi MR, Mao B, Wang W, Wang A, Chu C (2019) The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol J 17:1834–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X, Mei H, Luo L (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Luo XD, Liu J, Zhao J, Dai LF, Chen YL, Zhang L, Zhang FT, Hu BL, Xie JK (2018) Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings. J Integr Agr 17:265–275

    Article  CAS  Google Scholar 

  • Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Yu L, Chen D, Li L, Zhu Y, Xiao Y, Zhang D, Chen C (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128:1359–1371

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu Z-y, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo Y-l, Wang S, Lu D, Xing Y, Yuan L, Chen C (2019) Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. PNAS 116:3494–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Qiao YL, Han LZ, An YP, Zhang YY, Cao GL, Koh HJ (2004) Molecular mapping of QTLs for cold tolerance at the budburst period in rice. Agric Sci China:801–806

  • Ranawake AL, Manangkil OE, Yoshida S, Ishii T, Mori N, Nakamura C (2014) Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.). Biotechnol Biotec Eq 28:989–998

    Article  CAS  Google Scholar 

  • Reumers J, De Rijk P, Zhao H, Liekens A, Smeets D, Cleary J, Van Loo P, Van Den Bossche M, Catthoor K, Sabbe B, Despierre E, Vergote I, Hilbush B, Lambrechts D, Del-Favero J (2011) Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol 30:61–68

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci 179:97–102

    Article  CAS  Google Scholar 

  • Sasaki T (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Shirasawa S, Endo TR, Nakagomi K, Yamaguchi M, Nishio T (2012) Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor Appl Genet 124:937–946

    Article  CAS  PubMed  Google Scholar 

  • Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, van Dongen JT, Kopka J (2012) Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci 182:101–111

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Sameer Kumar CV (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spackman VMT, Cobb AH (2002) An enzyme-based method for the rapid determination of sucrose, glucose and fructose in sugar beet roots and the effects of impact damage and postharvest storage in clamps. J Sci Food Agric 82:80–86

    Article  CAS  Google Scholar 

  • Suh JP, Lee CK, Lee JH, Kim JJ, Kim SM, Cho YC, Park SH, Shin JC, Kim YG, Jena KK (2012) Identification of quantitative trait loci for seedling cold tolerance using RILs derived from a cross between japonica and tropical japonica rice cultivars. Euphytica 184:101–108

    Article  Google Scholar 

  • Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H (2018) Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Tan LB, Liu FX, Cai HW, Sun CQ (2011) Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J Genet Genomics 38:593–601

    Article  PubMed  Google Scholar 

  • Wambugu P, Ndjiondjop M-N, Furtado A, Henry R (2018) Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice. Plant Biotechnol J 16:100–110

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39:4553–4564

    Article  CAS  PubMed  Google Scholar 

  • Wang LZ, Wang LM, Xiang HT, Luo Y, Li R, Li ZJ, Wang CY, Meng Y (2016) Relationship of photosynthetic efficiency and seed-setting rate in two contrasting rice cultivars under chilling stress. Photosynthetica 54:581–588

    Article  CAS  Google Scholar 

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann JC, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Yu H, Huang J, Wang WS, Faruquee M, Zhang F, Zhao XQ, Fu BY, Chen K, Zhang HL, Tai SS, Wei CC, McNally KL, Alexandrov N, Gao XY, Li JY, Li ZK, Xu JL, Zheng TQ (2020) Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J 18:14–16

    Article  PubMed  Google Scholar 

  • Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Yu L, Wu Z (2019) Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol 19:398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao N, Huang WN, Li AH, Gao Y, Li YH, Pan CH, Ji H, Zhang XX, Dai Y, Dai ZY, Chen JM (2015) Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings. Theor Appl Genet 128:173–185

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A (2018) Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol 177:1108–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Zhao HW, Wang JG, Liu HL, Sun J, Guo LY, Zou DT (2017) Genomic dissection of rice yield traits under low temperature across multi-environments. Euphytica. https://doi.org/10.1007/s10681-017-1918-0

    Article  Google Scholar 

  • Yang LM, Liu HL, Zhao HW, Wang JG, Sun J, Zheng HL, Lei L, Zou DT (2019) Mapping quantitative trait loci and meta-analysis for cold tolerance in rice at booting stage. Euphytica. https://doi.org/10.1007/s10681-019-2410-9

    Article  Google Scholar 

  • Yang LM, Lei L, Li P, Wang JG, Wang C, Yang F, Chen JH, Liu HL, Zheng HL, Xin W, Zou DT (2021a) Identification of candidate genes conferring cold tolerance to rice (Oryza sativa L.) at the bud-bursting stage using bulk segregant analysis sequencing and linkage mapping. Front Plant Sci. https://doi.org/10.3389/fpls.2021.647239

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Wang JG, Han ZH, Lei L, Liu HL, Zheng HL, Xin W, Zou DT (2021b) Combining QTL-seq and linkage mapping to fine map a candidate gene in qCTS6 for cold tolerance at the seedling stage in rice. BMC Plant Biol 21:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Li JJ, Pan YH, Li JL, Shi HL, Zeng YW, Guo HI, Yang SM, Zheng WW, Yu JP (2017) Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun 8:1–13

    CAS  Google Scholar 

  • Zhang X, Peng Q, Zhang D, Wu J, Wang J, Huang P, Zhu S (2018a) QTL analysis of cold-tolerance at seedling stage in rice. Agric Biotechnol 7:80–82

    Google Scholar 

  • Zhang ZY, Li JJ, Tang ZS, Sun XM, Zhang HL, Yu JP, Yao GX, Li GL, Guo HF, Li JL, Wu HM, Huang HG, Xu YW, Yin ZG, Qi YH, Huang RF, Yang WC, Li ZC (2018b) Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J Exp Bot 69:4723–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wu T, Li Z, Huang K, Kim N-E, Ma Z, Kwon S-W, Jiang W, Du X (2021) OsGATA16, a GATA transcription factor, confers cold tolerance by repressing OsWRKY45–1 at the seedling stage in rice. Rice 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao JL, Zhang SH, Dong JF, Yang TF, Mao XX, Liu Q, Wang XF, Liu B (2017) A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol J 15:1141–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang S, Qin J, Sun C, Liu F (2020) The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnol J 18:756–769

    Article  CAS  PubMed  Google Scholar 

  • Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW (2019) Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Sci Adv 5:eaax3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jiang G, Yang L, Qiu L, He P, Nong C, Wang Y, He Y, Xing Y (2018) Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability. J Genet Genomics 45:539–547

    Article  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the major science and technology project of Heilongjiang Province, China (Grant No. 2020ZX16B01) and the China Postdoctoral Science Foundation (Grant No. 2019M651249).

Author information

Authors and Affiliations

Authors

Contributions

HLL, JL, and DTZ conceived and designed the research. LMY, SBX, and MJL participated in data analysis. JGW, SB, X, HLZ, JML, and WX performed material development, sample preparation, and data analysis. LMY, JL, and DTZ wrote the manuscript. JL and DTZ corrected the manuscript. The final manuscript was read and approved by all authors.

Corresponding authors

Correspondence to Jun Liu or Detang Zou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Data availability

The raw sequencing data were uploaded to the NCBI Sequence Read Archive database under the accession numbers SRR10896964, SRR10896965, SRR10896966, and SRR10896967.

Additional information

Communicated by Matthias Wissuwa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

SNP and Indel statistics. (A) Venn diagram of SNP in the four DNA pools. (B) Venn diagram of InDel in the four DNA pools.

Supplementary file1 (PNG 919 kb)

Fig. S2

Expression levels of the 13 candidate genes in DN422 and KY131 under the normal measured by qRT-PCR. The results were statistically analysed using Student’s t-test (*, P<0.05; **, P<0.01).

Supplementary file2 (PNG 338 kb)

Fig S3

Phylogenetic relationships among 15 WRKY-associated proteins with cold response function in Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Cucumis sativus. The maximum likelihood tree was created using MEGA v. 7.0 (bootstrap value = 1,000).

Supplementary file3 (TIF 6260 kb)

Fig. S4

Segregation of OsWRKY115 alleles in the 179 BC2F4 populations.

Supplementary file4 (TIF 90 kb)

Fig. S5

179 BC2F4 populations were genotyped with KASP8. The genotypes of KY131, DN422 and, Heterozygote were represented by yellow fluorescence, red fluorescence, and green fluorescence. The T, S, and M on the fluorescence marker represent cold tolerance (T), cold sensitivity (S), and moderate cold resistance (M), respectively.

Supplementary file6 (JPG 698 kb)

Supplementary file7 (JPG 15872 kb)

Supplementary file8 (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, L., Xu, S. et al. OsWRKY115 on qCT7 links to cold tolerance in rice. Theor Appl Genet 135, 2353–2367 (2022). https://doi.org/10.1007/s00122-022-04117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04117-9

Navigation