Skip to main content
Log in

Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Powdery mildew resistance gene MlIW39, originated from wild emmer wheat accession IW39, was mapped to a 460.3 kb genomic interval on wheat chromosome arm 2BS.

Abstract

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is destructive disease and a significant threat to wheat production globally. The most effective way to control this disease is genetic resistance. However, when resistance genes become widely deployed in agriculture, their effectiveness is compromised by virulent variants that were previously minor components of the pathogen population or that arise from mutation. This necessitates continual search for new sources of resistance in both wheat and its near relatives. In this study, we produced a common wheat line 8D49 (87-1/IW39//2*87-1), which has all-stage immunity to Bgt isolate E09 and many other Chinese Bgt isolates, by transferring powdery mildew resistance from Israeli wild emmer wheat (WEW) accession IW39 to the susceptible common wheat line 87-1. Genetic analysis indicated that the powdery mildew resistance in 8D49 was controlled by a single dominant gene, temporarily designated MlIW39. Genetic linkage analyses with molecular markers showed that MlIW39 was located in a 0.7 cm genetic region between markers QB-3-16 and 7Seq546 on the short arm of chromosome 2B. Fine mapping using three large F2 populations delimited MlIW39 to a physical interval of approximately 460.3 kb region in the WEW reference genome (Zavitan v1.0) that contained six annotated protein-coding genes, four of which had gene structures similar to known disease resistance genes. This provides a foundation for map-based cloning of MlIW39. Markers 7Seq622 and 7Seq727 co-segregating with MlIW39 can be utilized for marker-assisted selection in further genetic studies and wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anikster Y, Manisterski J, Long DL, Leonard KJ (2005) Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis 89:55–62

    Article  CAS  PubMed  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. TheorAppl Genet 121:499–510

    Article  CAS  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36introgressed from Triticum turgidum var. dicoccoides in durum wheat. TheorAppl Genet 117:135–142

    Article  CAS  Google Scholar 

  • Buerstmayr H, Stierschneider M, Steiner B, Lemmens M, Griesser M, Nevo E, Fahima T (2003) Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130:17–23

    Article  Google Scholar 

  • Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z (2018) Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). TheorAppl Genet 131:2621–2637

    Article  CAS  Google Scholar 

  • Chen X, Kang Z (2017) Stripe rust. Springer, Berlin

    Book  Google Scholar 

  • Chen XM, Luo YH, Xia X, Xia LQ, Chen X, Ren ZL, He Z, Jia J (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Chen F, Jia H, Zhang X, Qiao L, Li X, Zheng J, Guo H, Powers C, Yan L, Chang Z (2019) Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. Crop J 7:771–783

    Article  Google Scholar 

  • Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W (2020) A collinearity incorporating homology inference strategy for connecting emerging assemblies in the Triticeae Tribe as a pilot practice in the plant pangenomic era. Mol Plant 13:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Devi KD, Punyarani K, Singh NS, Devi HS (2013) An efficient protocol for total DNA extraction from the members of order Zingiberales-suitable for diverse PCR based downstream applications. Springerplus 2:669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao L, Yang G, Li Y, Fan N, Li H, Zhang M, Xu R, Zhang M, Zhao A, Ni Z, Zhang Y (2019) Fine mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 4 of maize (Zea mays L.). TheorAppl Genet 132:3047–3062

    Article  CAS  Google Scholar 

  • Geng M, Zhang J, Peng F, Liu X, Lv X, Mi Y, Li Y, Li F, Xie C, Sun Q (2016) Identification and mapping of MlIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Mol Breed 36:130

    Article  CAS  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu R, Ma P, Du H, Zhang H, Wu Q, Yang L, Gong S, Liu T, Huo N, Gu YQ, Zhu S (2020) Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796. TheorAppl Genet 134:53–62

    Article  CAS  Google Scholar 

  • Hewitt T, Muller MC, Molnar I, Mascher M, Holusova K, Simkova H, Kunz L, Zhang J, Li J, Bhatt D, Sharma R, Schudel S, Yu G, Steuernagel B, Periyannan S, Wulff B, Ayliffe M, McIntosh R, Keller B, Lagudah E, Zhang P (2020) A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol 229:2812–2826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  CAS  PubMed  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  CAS  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Juroszek P, von Tiedemann A (2013) Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136:21–33

    Article  Google Scholar 

  • Kang Y, Zhou M, Merry AM, Barry KM (2020) Mechanisms of powdery mildew resistance of wheat: a review of molecular breeding. Plant Pathol 69:601–617

    Article  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). TheorAppl Genet 119:531–539

    Article  CAS  Google Scholar 

  • Li G, Xu X, Bai G, Carver BF, Hunger R, Bonman JM (2016) Identification of novel powdery mildew resistance sources in wheat. Crop Sci 56:1817–1830

    Article  CAS  Google Scholar 

  • Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo D, Friebe B, Ma P, Liu W (2020a) A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. TheorAppl Genet 133:1149–1159

    Article  CAS  Google Scholar 

  • Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q, Chen Y, Lu P, Guo G, Zhang H, Zhang P, Zhu K, Li Y, Zhang Y, Wang R, Yuan C, Liu W, Yu D, Luo MC, Fahima T, Nevo E, Li H, Liu Z (2020b) A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol 228:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen S, Fan C, Zhang M, Tian S, Kang W, Zhao W, Bi C, Wang Q, Lu S, Guo W, Ni Z, Xie C, Sun Q, You M (2020c) Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike number per unit area in common wheat (Triticum aestivum L.). TheorAppl Genet 133:2259–2269

    Article  CAS  Google Scholar 

  • Liang Y, Zhang D, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y, Lu P, Zhang D, Liu Z, Zhu J, Chen Y, Zhang Y, Luo M, Dvorak J, Huo N, Sun Q, Gu Y, Liu Z (2015) Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. TheorAppl Genet 128:1617–1629

    Article  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Yang T (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    Article  CAS  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euthytica 123:21–29

    Article  CAS  Google Scholar 

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. TheorAppl Genet 124:1041–1049

    Article  CAS  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. TheorAppl Genet 118:1059–1064

    Article  CAS  Google Scholar 

  • Ma P, Xu H, Li L, Zhang H, Han G, Xu Y, Fu X, Zhang X, An D (2016a) Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1. Front Plant Sci 7:546

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma P, Xu H, Han G, Luo Q, Xu Y, Zhang X, An D, Li L, Sun Y (2016b) Characterization of a segregation distortion locus with powdery mildew resistance in a wheat-Thinopyrum intermediumintrogressionline WE99. Plant Dis 100:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H et al (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2010) MlAB10: a Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Sci 50:2261–2267

    Article  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. emThell.). 9. geneMlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Moseman JG, Nevo E, Gerechter-Amitai ZK, El-Morshidy MA, Zohary D (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25:262–265

    Article  Google Scholar 

  • Nevo E (2014) Evolution of wild emmer wheat and crop improvement. J SystEvol 52:673–696

    Google Scholar 

  • Nevo E, Moseman JG, Beiles A, Zohary D (1985) Patterns of resistance of Israeli wild emmer wheat to pathogens I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica 67:209–222

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Population genetics, genetic resources, and genome organization of wheat progenitor, Triticum dicoccoides. Springer, Heidelberg

    Google Scholar 

  • Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z, Wu Q, Chen Y, Lu P, Zhang D, Wang L, Sun H, Tsomin Y, Gabriel KG, Rudi A, Jaroslav D, Ling H, Luo M, Gu Y, Sun Q, Liu Z (2014) Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE 9(6):e100160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Wang H, Li Y, Wang W, Liu Y, Mu J, Geng M, Guo W, Hu Z, Ma J, Sun Q, Xie C (2020) Fine mapping of the wheat leaf rust resistance gene LrLC10 (Lr13) and validation of its co-segregation markers. Front Plant Sci 11:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60

    Article  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:1–7

    Article  CAS  Google Scholar 

  • Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X, Bai GH, Zhang HY, Tan FQ, Ren ZL, Luo PG (2015) Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. TheorAppl Genet 128:517–528

    Article  CAS  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jorgensen LN, Hovmoller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B (2018) Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant MolBiol 98:249–260

    CAS  Google Scholar 

  • Summers RW, Brown JKM (2013) Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol 62(1):115–121

    Article  Google Scholar 

  • Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Liu H, Yang L, Qu Y, Li Y, Li T, Cheng W, Zhou Y, Liu Z, Li J, Li H (2018) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. TheorAppl Genet 131:2085–2097

    Article  CAS  Google Scholar 

  • Van Ooijen J (2006) Software for the calculation of genetic linkage maps in experimental populations Kyazma BV. Wageningen, Netherlands

    Google Scholar 

  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Article  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. TheorAppl Genet 124:911–922

    Article  CAS  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yaniv E, Raats D, Ronin Y, Korol AB, Grama A, Bariana H, Dubcovsky J, Schulman AH, Fahima T (2015) Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol Breed 35:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Fang X, Li P, Yang Y, Hao Y, Liang X, Bo C, Ni F, Ma X, Du X, Li A, Wang H, Nevo E, Kong L (2021) Genetic mapping of a novel powdery mildew resistance gene in wild emmer wheat from “Evolution Canyon” in Mt. Carmel Israel. TheorAppl Genet 134:909–921

    Article  CAS  Google Scholar 

  • Zhang D, Zhu K, Dong L, Liang Y, Li G, Fang T, Guo G, Wu Q, Xie J, Chen Y, Lu P, Li M, Zhang H, Wang Z, Zhang Y, Sun Q, Liu Z (2019) Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J 7:761–770

    Article  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). TheorAppl Genet 121:1613–1621

    Article  Google Scholar 

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y, Dong L, Li M, Zhang H, Zhang P, Zhu K, Li B, Deal KR, Huo N, Zhang Y, Luo MC, Liu S, Gu YQ, Li H, Liu Z (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project of China (2016YFD0101802) and National Natural Science Foundation of China (31671676, 31872865). We thank Dr. R. A. McIntosh for suggestions regarding the manuscript. We are grateful to the referees for their valuable suggestions and comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CX conceived the project; LQ performed the experiments; NL, HW, QZ, WW assisted in phenotyping and genotyping of the populations; XS performed inoculation of twenty-five Bgt isolates; FL analyzed the SNP data; WG analyzed the re-sequenced data; ZH, HL, JM, QS assisted in revising the manuscript; LQ and CX analyzed the experimental results and wrote the manuscript.

Corresponding author

Correspondence to Chaojie Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Liu, N., Wang, H. et al. Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides). Theor Appl Genet 134, 2469–2479 (2021). https://doi.org/10.1007/s00122-021-03836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03836-9

Navigation