Skip to main content
Log in

Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust.

Abstract

Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bansal UK, Arief VN, DeLacy IH, Bariana H (2013) Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 194:219–233

    Article  Google Scholar 

  • Bansal UK, Bariana H, Debbie W, Randhawa M, Wicker T, Hayden M, Keller B (2014) Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor Appl Genet 127:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Bossolini E, Miah H, Keller B, Park RF, Bariana HS (2008) Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 164:821–828

    Article  Google Scholar 

  • Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh D, Bariana HS (2011) Characterization of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS (2003) Breeding for disease resistance. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Harcourt, Academic Press, pp 244–253

    Chapter  Google Scholar 

  • Bariana HS, Bansal UK (2017) Breeding for disease resistance. In: Thomas B, Brian G, Murphy D (eds) Encyclopaedia of applied plant sciences, vol Voluem 3. Waltham MA, Academic Press, pp 69–76

    Chapter  Google Scholar 

  • Bariana HS, Bansal UK, Basandrai D, Chhetri M (2013) Application of genomics to breed disease-resistant crop varieties. In: Kole C (ed) Genomics and breeding for climate-resilient crops, vol 2. Springer-Verlag, Berlin, Heidelberg, pp 291–314

    Chapter  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker assisted selection technologies. Austr J Agr Res 58:576–587

    Article  Google Scholar 

  • Bhardwaj SC, Jain SK, Prashar M, Kumar S (2013) A new variant 5R9–7 of Puccinia triticina on emmer and durum wheats in India. Australas Plant Pathol 42:525–531

    Article  CAS  Google Scholar 

  • Bhardwaj SC, Prashar M, Jain SK, Kumar S, Sharma YP (2010) Physiologic specialization of Puccinia triticina on wheat (Triticum species) in India. Indian J Agri Sci 80:805–811

    Google Scholar 

  • Caldwell RM, (1968) Breeding for general and/or specific plant disease resistance. In: Findlay KW, Shepherd KW (ed) Proc 3rd Int Wheat Genet Symp, Canberra, Australia, Australian Academy of Science, Canberra, pp263–272

  • Cao X, Zhou J, Gong X, Zhao G, Jia J, Qi X (2012) Identification and validation of a major quantitative trait locus for slow-rusting resistance to stripe rust in wheat. J Integr Plant Biol 54:330–344

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  Google Scholar 

  • Chhetri M (2015) Molecular mapping and genetic characterization of rust resistance in wheat. PhD thesis. University of Sydney, Sydney, Australia

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Darino MA, Dieguez MJ, Singh D, Ingala LR, Pergolesi MF, Park RP, McIntosh RA, Sacco F (2015) Detection and location of Lr11 and other leaf rust resistance genes in the durably resistant wheat cultivar Buck Poncho. Euphytica 206:135–147

    Article  Google Scholar 

  • Dholakia BB, Rajwade AV, Hosmani P, Khan RR, Chavan S, Reddy DMR, Lagu MD, Bansal UK, Saini RG, Gupta VS (2013) Molecular mapping of leaf rust resistance gene Lr15 in hexploid wheat. Mol Breed 31:743–747

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat AL, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103:1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh D, Singh RP (2011) New slow rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet 110:1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetic 164:655–664

    Article  CAS  Google Scholar 

  • Kandiah P, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132:3169–3176

    Article  Google Scholar 

  • Kolmer JA, Long DL, Hughes ME (2007) Physiological specialization of Puccinia triticina on wheat in the United States in 2005. Plant Dis 91:979–984

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Salter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Sci 323:1360–1363

    Article  CAS  Google Scholar 

  • Liu Q, Ni ZF, Peng HR, Song W, Liu ZY, Sun QX (2007) Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica 155:71–78

    Article  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, (1988) Catalogue of gene symbols for wheat. Proc 7th Int Wheat Genet Sym Vol 2 (Eds TE Miller and RMD Koebner) pp1225–1323 (Institute of Plant Science Research, Cambridge, UK)

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts-an atlas of rust resistance genes. CSIRO Publications, East Melbourne, Australia, p 200

    Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) Recent evolution of a hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates BJ, Jackson EW, Jin Y, Njau P, Rouse MN, Singh D, Wanyera R, Bonman JM (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97:882–890

    Article  CAS  PubMed  Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Forrest KL, Hayden MJ, Bansal UK (2018) Characterization and molecular mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Nsabiyera V, Qureshi N, Bariana HS, Wong D, Forrest KL, Hayden MJ, Bansal UK (2016) Molecular markers for adult plant leaf rust resistance gene Lr48in wheat. Mol Breed 36(65):1–9

    CAS  Google Scholar 

  • Qureshi N, Bariana H, Kumaran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Randhawa M, Bansal UK, Valárik M, Klocová B, Doležel J, Bariana HS (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  PubMed  Google Scholar 

  • Randhawa MS, Bariana HS, Mago R, Bansal UK (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:65

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39 and a leaf rust resistance gene from Aegilops cylindrical may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) 2DS. Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Simkova H, Fossati D, Moullet O, Brabant C, Vrana J, Dolezel J, Krattinger SG (2017) Rapid cloning of genes in hexaploidy wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796

    Article  CAS  PubMed  Google Scholar 

  • Toor AK, Bansal UK, Bhardwaj S, Badebo A, Bariana HS (2013) Characterization of stem rust resistance in old tetraploid wheat land races from the Watkins collection. Genet Resour Crop Evol 60:1–9

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Agricultural Research, the Australian Centre for International Research for financing Indo-Australian collaboration and the Grains Research and development Corporation (GRDC) Australia for financial support.

Funding

Indian Council of Agricultural Research: CRSCIIWBRSIL201500600187, Australian Centre for International Research, Australia: CIM-2013-009, Grains Research and Development Corporation (GRDC) Australia: 9176057.

Author information

Authors and Affiliations

Authors

Contributions

SK and SCB conceived the idea, collected landraces and conducted phenotyping; SK, OPG, VVK, PP, KS, HV did SSR marker work; HK developed mapping population; HM, HSB conducted phenotyping of the diversity panel; NQ, KLF carried out 90 K marker analysis, AS did KASP genotyping; UKB designed markers and tabulated data; SK, SCB, GP, UKB, HSB wrote manuscript; SCB, UKB, HSB, NQ, KLF, RMT edited manuscript.

Corresponding authors

Correspondence to Subhash C. Bhardwaj, Harbans S. Bariana or Urmil K. Bansal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Beat Keller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Bhardwaj, S.C., Gangwar, O.P. et al. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor Appl Genet 134, 849–858 (2021). https://doi.org/10.1007/s00122-020-03735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03735-5

Navigation