Skip to main content
Log in

Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A multiparental random mating population used in sorghum breeding is amenable for the detection of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches.

Abstract

Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] production are widespread in the developing world. We report on BRP13R, a multiparental random mating population (MP-RMP), which is commonly used in sorghum recurrent selection targeting tropical soil adaptation. Recombination dissipated much of BRP13R’s likely original population structure and average linkage disequilibrium (LD) persisted up to 2.5 Mb, establishing BRP13R as a middle ground between biparental populations and sorghum association panels. Genome-wide association mapping (GWAS) identified conserved QTL from previous studies, such as for root morphology and grain yield under low-P, and indicated the importance of dominance in the genetic architecture of grain yield. By overlapping consensus QTL regions, we mapped two candidate P efficiency genes to a ~ 5 Mb region on chromosomes 6 (ALMT) and 9 (PHO2). Remarkably, we find that only 200 progeny genotyped with ~ 45,000 markers in BRP13R can lead to GWAS-based positional cloning of naturally rare, subpopulation-specific alleles, such as for SbMATE-conditioned Al tolerance. Genomic selection was found to be useful in such MP-RMP, particularly if markers in LD with major genes are fitted as fixed effects into GBLUP models accommodating dominance. Shifts in allele frequencies in progeny contrasting for grain yield indicated that intermediate to minor-effect genes on P efficiency, such as SbPSTOL1 genes, can be employed in pre-breeding via allele mining in the base population. Therefore, MP-RMPs such as BRP13R emerge as multipurpose resources for efficient gene discovery and deployment for breeding sorghum cultivars adapted to tropical soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petrov BN, Czaki F (eds) Proceedings 2nd International Symposium on Information Theory. Akademia Kiado, Budapest, pp 267–281

  • Amadeu RR, Cellon C, Olmstead JW et al (2016) AGHmatrix: R package to construct relationship matrices for autotetraploid and diploid species: a blueberry example. Plant Genome 9:1–10

    Google Scholar 

  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781

    CAS  PubMed  Google Scholar 

  • Ben-Israel I, Kilian B, Nida H, Fridman E (2012) Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor. PLoS ONE 7:e38993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardino KC, Pastina MM, Menezes CB et al (2019) The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biol 19:87

    PubMed  PubMed Central  Google Scholar 

  • Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54:68–75

    Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet S, Olatoye MO, Marla SR et al (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585

    PubMed  PubMed Central  Google Scholar 

  • Bouchet S, Pot D, Deu M et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 7:e33470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants the missing heritability is in the field. Genome Biol 12:232

    PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    PubMed  PubMed Central  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. State Queensland, Dep Prim Ind Fish Brisbane

    Google Scholar 

  • Caniato FF, Guimarães CT, Hamblin M et al (2011) The relationship between population structure and aluminum tolerance in cultivated sorghum. PLoS ONE 6:e20830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caniato FF, Guimaraes CT, Schaffert RE et al (2007) Genetic diversity for aluminum tolerance in sorghum. Theor Appl Genet 114:863–876

    CAS  PubMed  Google Scholar 

  • Caniato FF, Hamblin MT, Guimaraes CT et al (2014) Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus. AltSB PLoS One 9:e87438

    PubMed  Google Scholar 

  • Carvalho G, Schaffert RE, Malosetti M et al (2016) Back to acid soil fields: The citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils. G3 Genes Genomes Genet 6:475–484. https://doi.org/10.1534/g3.115.025791

    Article  CAS  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381

    Google Scholar 

  • De Alencar Figueiredo LF, Calatayud C, Dupuits C et al (2008) Phylogeographic evidence of crop neodiversity in sorghum. Genetics 179:997–1008

    PubMed  PubMed Central  Google Scholar 

  • de Sousa SM, Clark RT, Mendes FF et al (2012) A role for root morphology and related candidate genes in P acquisition efficiency in maize. Funct Plant Biol 39:925–935

    Google Scholar 

  • Du Q, Wang K, Zou C et al (2018) The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol 177:1743–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB, Jannink J-L (2012) Shrinkage estimation of the realized relationship matrix. G3 Genes Genomes Genet 2:1405–1413

    Google Scholar 

  • FAO 2015 Status of the world’s soil resources (SWSR)–main report Food Agric Organ United Nations Intergov Tech panel soils Rome, Italy 650

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    CAS  PubMed  Google Scholar 

  • Foy CD, Duncan RR, Waskom RM, Miller DR (1993) Tolerance of sorghum genotypes to an acid, aluminum toxic Tatum subsoil. J Plant Nutr 16:97–127. https://doi.org/10.1080/01904169309364517

    Article  CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J et al (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535

    CAS  PubMed  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346. https://doi.org/10.1371/journal.pone.0090346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrell Jr FE (2015) With contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R package version 3.17-4

  • Harris K, Subudhi PK, Borrell A et al (2006) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    PubMed  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95

    CAS  PubMed  Google Scholar 

  • Hufnagel B, de Sousa SM, Assis L et al (2014) Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–677

    PubMed  PubMed Central  Google Scholar 

  • Hufnagel B, Guimaraes CT, Craft EJ et al (2018) Exploiting sorghum genetic diversity for enhanced aluminum tolerance: Allele mining based on the Alt SB locus. Sci Rep 8:10094

    PubMed  PubMed Central  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant Soil 325:335–349. https://doi.org/10.1007/s11104-009-9984-2

    Article  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    PubMed  PubMed Central  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46:237–260. https://doi.org/10.1146/annurev.pp.46.060195.001321

    Article  CAS  Google Scholar 

  • Leiser WL, Rattunde HFW, Piepho H-P et al (2012) Selection strategy for sorghum targeting phosphorus-limited environments in West Africa: analysis of multi-environment experiments. Crop Sci 52:2517–2527

    Google Scholar 

  • Leiser WL, Rattunde HFW, Weltzien E et al (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum. BMC Plant Biol 14:206. https://doi.org/10.1186/s12870-014-0206-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. https://doi.org/10.1104/pp.111.175414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace E, Innes D, Hunt C et al (2019) The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132:751–766

    PubMed  Google Scholar 

  • Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377–1395

    CAS  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169

    CAS  PubMed  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    CAS  PubMed  Google Scholar 

  • Mackay IJ, Bansept-Basler P, Barber T et al (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 Genes Genomes Genet 4:1603–1610

    Google Scholar 

  • Magalhaes J, Piñeros MA, Maciel L, Kochian L (2018) Emerging pleiotropic mechanisms underlying aluminum resistance and phosphorus acquisition on acidic soils. Front Plant Sci 9:1420

    PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y et al (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. https://doi.org/10.1038/ng2074

    Article  CAS  PubMed  Google Scholar 

  • Magnavaca R, Gardner CO, Clark RB (1987) Inheritance of aluminum tolerance in maize in Genetic aspects of plant mineral nutrition. Springer, Berlin, pp 201–212

    Google Scholar 

  • Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Mineral nutrition of higher plants. Academic Press, London, pp 596–657

  • Melo JO, Martins LGC, Barros BA et al (2019) Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci 116:313–318. https://doi.org/10.1073/PNAS.1808400115

    Article  CAS  PubMed  Google Scholar 

  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D et al (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci 114:E3563–E3572

    PubMed  PubMed Central  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci 110:453–458

    CAS  PubMed  Google Scholar 

  • Neyman J, Pearson ES (1928) On the use and interpretation of certain test criteria for purposes of statistical inference: part II. Biometrika 20A:263–294. https://doi.org/10.2307/2331945

    Article  Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    CAS  PubMed  Google Scholar 

  • Nothnagel M, Ellinghaus D, Schreiber S et al (2009) A comprehensive evaluation of SNP genotype imputation. Hum Genet 125:163–171

    CAS  PubMed  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M et al (2014) A foundation for provitamin a biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    PubMed  PubMed Central  Google Scholar 

  • Parra-Londono S, Kavka M, Samans B et al (2018) Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker–trait associations. Ann Bot 121:267–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson K (1895) Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia. Philos Trans R Soc London Ser A, Contain Pap a Math or Phys Character 187:253–318. https://doi.org/10.1098/rsta.1896.0007

    Article  Google Scholar 

  • Quinby JR, Karper RE (1946) Heterosis in sorghum resulting from the heterozygous condition of a single gene that affects duration of growth. Am J Bot 33:716–721

  • R Core Team (2016) R: A language and environment for statistical computing

  • Robinson PS (2006) EP1726664B1—Detection system for PCR assay

  • Ruiz HA, Fernandes B, Novais RF, Alvaes V (1988) VH Efeito da umidade do solo sobre o volume e o conteúdo de fósforo no exsudato xilemático de soja. R Bras Ci Solo 12:39–42

    Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7:1–10

    Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RWL (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018. https://doi.org/10.1073/pnas.81.24.8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Google Scholar 

  • Shaw JN (2001) Iron and aluminum oxide characterization for highly-weathered Alabama ultisols. Commun Soil Sci Plant Anal 32:49–64. https://doi.org/10.1081/CSS-100102992

    Article  CAS  Google Scholar 

  • Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity (Edinb) 116:395

    CAS  Google Scholar 

  • Stacklies W, Redestig H (2016) The pcaMethods package. Diambil dari< https//www. bioconductor. org/packages/3.3/bioc/manuals/pcaMethods/man/pcaMethods. pdf

  • Stadlmeier M, Hartl L, Mohler V (2018) Usefulness of a multiparent advanced generation intercross population with a greatly reduced mating design for genetic studies in winter wheat. Front Plant Sci 9:1825

    PubMed  PubMed Central  Google Scholar 

  • Swarts K, Li H, Romero Navarro JA et al (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7:1–12

    Google Scholar 

  • Tully K, Sullivan C, Weil R, Sanchez P (2015) The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability 7:6523–6552

    Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  PubMed  Google Scholar 

  • Velazco JG, Malosetti M, Hunt CH et al (2019) Combining pedigree and genomic information to improve prediction quality: an example in sorghum. Theor Appl Genet 132:1–13

    Google Scholar 

  • Vitezica ZG, Varona L, Legarra A (2013) On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics 195:1223–1230

    PubMed  PubMed Central  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Google Scholar 

  • Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109

    CAS  PubMed  Google Scholar 

  • Webster OJ (1965) Genetic studies in Sorghum vulgare (Pers.) 1. Crop Sci 5:207–210

    Google Scholar 

  • Weir BS (2008) Linkage disequilibrium and association mapping. Annu Rev Genomics Hum Genet 9:129–142

    CAS  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  PubMed Central  Google Scholar 

  • Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203

    CAS  PubMed  Google Scholar 

  • Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genet 5:89

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge grants from the CGIAR Generation Challenge Program, the Embrapa Macroprogram, the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and the National Council for Scientific and Technological Development (CNPq). The funding body had no role in the design of the study and collection, analysis and interpretation of data and in writing the manuscript. We also thank Gislene Braga Cristeli and all the staff and trainees of Embrapa Maize and Sorghum that indirectly collaborated in the execution of this work.

Author information

Authors and Affiliations

Authors

Contributions

JVM conceived, supervised the study and contributed to manuscript writing and revision, KCB performed experiments, analyzed the data and contributed to manuscript writing, CBM, SMS and RES contributed to sorghum phenotyping, MMP designed the statistical framework and contributed to data analysis and interpretation, BH contributed to integrative analysis of QTL conservation between RILs and BRP13R, LVK, CTG and PCSC revised the manuscript, and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maria Marta Pastina or Jurandir V. Magalhaes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

On behalf of all co-authors, the corresponding author states that the work described is original, previously unpublished research. All the authors listed have approved the manuscript.

Additional information

Communicated by Hai-Chun Jing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardino, K.C., de Menezes, C.B., de Sousa, S.M. et al. Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population. Theor Appl Genet 134, 295–312 (2021). https://doi.org/10.1007/s00122-020-03697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03697-8

Navigation