Skip to main content

Advertisement

Log in

Crop resistant starch and genetic improvement: a review of recent advances

  • Review Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed Z, Tetlow IJ, Ahmed R, Morell MK, Emes MJ (2015) Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci 233:95–106

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Z, Tetlow IJ, Falk DE, Liu Q, Emes MJ (2016) Resistant starch content is related to granule size in barley. Cereal Chem 93:618–630

    Article  CAS  Google Scholar 

  • Ahuja G, Jaiswal S, Hucl P, Chibbar RN (2013) Genome-specific granule-bound starch synthase I (GBSSI) influences starch biochemical and functional characteristics in near-isogenic wheat (Triticum aestivum L.) lines. J Agric Food Chem 61:12129–12138

    Article  CAS  PubMed  Google Scholar 

  • Åkerberg AK, Liljeberg HG, Granfeldt YE, Drews AW, Björck IM (1998) An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr 128:651–660

    Article  PubMed  Google Scholar 

  • Ambigaipalan P, Hoover R, Donner E, Liu Q, Jaiswal S, Chibbar R, Nantanga KKM, Seetharaman K (2011) Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res Int 44:2962–2974

    Article  CAS  Google Scholar 

  • Andersson M, Melander M, Pojmark P, Larsson H, Bulow L, Hofvander P (2006) Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J Biotechnol 123:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ao ZH, Jane JL (2007) Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohydr Polym 67:46–55

    Article  CAS  Google Scholar 

  • Asai H, Abe N, Matsushima R, Crofts N, Oitome NF, Nakamura Y, Fujita N (2014) Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds. J Exp Bot 65:5497–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asare EK, Jaiswal S, Maley J, Båga M, Sammynaiken R, Rossnagel BG, Chibbar RN (2011) Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J Agric Food Chem 59:4743–4754

    Article  CAS  PubMed  Google Scholar 

  • Ashwar BA, Gani A, Shah A, Wani IA, Masoodi FA (2016) Preparation, health benefits and applications of resistant starch—a review. Starch/Stärke 68:287–301

    Article  CAS  Google Scholar 

  • Ashwar BA, Gani A, Shah A, Masoodi FA (2017) Production of RS4 from rice by acetylation: physico–chemical, thermal, and structural characterization. Starch/Stärke 69:1600052

    Article  CAS  Google Scholar 

  • Asp NG (1992) Resistant starch. Proceeding from the second plenary meeting of EURESTA: European FLAIR concerted action no.11 on physiological implications of the consumption of resistant starch in man. Eur J Clin Nutr 46:S1

    Google Scholar 

  • Bao JS, Zhou X, Xu FF, He Q, Park YJ (2017) Genome-wide association study of the resistant starch content in rice grains. Starch/Stärke 69:1600343

    Article  CAS  Google Scholar 

  • Batey IL, Hayden MJ, Cai S, Sharp PJ, Cornish GB, Morell MK, Appels R (2001) Genetic mapping of commercially significant starch characteristics in wheat crosses. Aust J Agric Res 52:1287–1296

    Article  CAS  Google Scholar 

  • Berry CS (1986) Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J Cereal Sci 4:301–314

    Article  CAS  Google Scholar 

  • Bindels LB, Munoz RRS, Gomesneto JC, Mutemberezi V, Martínez I, Salazar N, Cody EA, Quintero-Villegas MI, Kittana H, Reyes-Gavilán CGDL, Schmaltz RJ, Muccioli GG, Walter J, Ramer-Tait AE (2017) Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Blauth SL, Kim KN, Klucinec J, Shannon JC, Thompson D, Guiltinan M (2002) Identification of mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol Biol 48:287–297

    Article  CAS  PubMed  Google Scholar 

  • Boll EV, Ekstrom LM, Courtin CM, Delcour JA, Nilsson AC, Bjorck IM, Ostman EM (2016) Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on overnight glucose tolerance and markers of gut fermentation in healthy young adults. Eur J Nutr 55:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Borem A, Mather DE, Rasmusson DC, Fulcher RG, Hayes PM (1999) Mapping quantitative trait loci for starch granule traits in barley. J Cereal Sci 29:153–160

    Article  CAS  Google Scholar 

  • Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, Cuesta-Seijo JA, Falini G, Battistelli A, Trost P, Lafiandra D (2018) Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnol J 16:1723–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HC, Jobling SA, Morell MK, Rahman S (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J Exp Bot 62:4927–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai JW, Man JM, Huang J, Liu QQ, Wei WX, Wei CX (2015) Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr Polym 125:35–44

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yan X, Chen GX, Zhou JW, Li XH, Ma WJ, Yan YM (2015) Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. J Proteomics 112:95–112

    Article  CAS  PubMed  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buléon A, Holm PB, Hebelstrup KH (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champ M, Langkilde AM, Brouns F, Kettlitz B, Bail-Collet YL (2003) Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutr Res Rev 16:143–161

    Article  CAS  PubMed  Google Scholar 

  • Chen TT, Ning LH, Liu X, Cui DZ, Zhang HZ, Li DT, Zhao L, Chen HB (2013) Development of functional molecular markers of Sbe I and Sbe IIb for the high amylose maize germplasm line GEMS-0067. Crop Sci 53:482–490

    Article  CAS  Google Scholar 

  • Chen GX, Zhu JT, Zhou JW, Subburaj S, Zhang M, Han CX, Hao PC, Li XH, Yan YM (2014) Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. BMC Plant Biol 14:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen GX, Zhou JW, Liu YL, Lu XB, Han CX, Zhang WY, Xu YH, Yan YM (2016) Biosynthesis and regulation of wheat amylose and amylopectin from proteomic and phosphoproteomic characterization of granule-binding proteins. Sci Rep 6:33111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GX, Zhen SM, Liu YL, Yan X, Zhang M, Yan YM (2017a) In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC Plant Biol 17:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen MH, Bergman CJ, McClung AM, Everette JD, Tabien RE (2017b) Resistant starch: variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chem 234:180–189

    Article  CAS  PubMed  Google Scholar 

  • Chia T, Adamski NM, Saccomanno B, Greenland A, Nash A, Uauy C, Trafford K (2017) Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. J Exp Bot 68:5497–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilcoat D, Liu ZB, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  PubMed  CAS  Google Scholar 

  • Chiotelli E, Le Meste M (2002) Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem 79:286–293

    Article  CAS  Google Scholar 

  • Crofts N, Abe K, Aihara S, Itoh R, Nakamura Y, Itoh K, Fujita N (2012) Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci 193:62–69

    Article  PubMed  CAS  Google Scholar 

  • Crofts N, Abe N, Oitome NF, Matsushima R, Hayashi M, Tetlow IJ, Emes MJ, Nakamura Y, Fujita N (2015) Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J Exp Bot 66:4469–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumez S, Wattebled F, Dauvillee D, Delvalle D, Planchot V, Ball SG, D’Hulst C (2006) Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. Plant Cell 18:2694–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eerlingen RC, Decuninck M, Delcour JA (1993) Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chem 70:345–350

    CAS  Google Scholar 

  • Emilien CH, Hsu WH, Hollis JH (2017) Effect of resistant wheat starch on subjective appetite and food intake in healthy adults. Nutrition 43:69–74

    Article  PubMed  CAS  Google Scholar 

  • Englyst HN, Wiggins HS, Cummings JH (1982) Determination of the non-starch polysaccharides in plant foods by gas–liquid chromatography of constituent sugars as alditol acetates. Analyst 107:307–318

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Fellmann C, Lowe SW (2014) Stable RNA interference rules for silencing. Nat Cell Biol 16:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng N, He ZH, Zhang Y, Xia XC, Zhang Y (2013) QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross. Crop J 1:166–171

    Article  Google Scholar 

  • Feng C, Su HD, Han B, Wang R, Liu YL, Guo XR, Liu C, Zhang J, Yuan J, Birchler JA, Han FP (2018) High efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foschia M, Beraldo P, Peressini D (2017) Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. J Sci Food Agric 97:572–577

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, Aihara S, Nakamura Y (2011) Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J Exp Bot 62:4819–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao CX (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:1–2

    Article  CAS  Google Scholar 

  • Gao M, Fisher DK, Kim KN, Shannon JC, Guiltinan MJ (1997) Independent genetic control of maize starch-branching enzymes IIa and IIb. Plant Physiol 114:69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood DL, Shannon JC, Creech RG (1976) Starches of endosperms possessing different alleles at amylose-extender locus in Zea mays L. Cereal Chem 53:355–364

    CAS  Google Scholar 

  • Gilding EK, Frere CH, Cruickshank A, Rada AK, Prentis PJ, Mudge AM, Mace ES, Jordan DR, Godwin ID (2013) Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nat Commun 4:1483

    Article  PubMed  CAS  Google Scholar 

  • Gil-Humanes J, Wang YP, Liang Z, Shan QW, Ozuna CV, Sanchez-Leon S, Baltes NJ, Starker C, Barro F, Gao CX, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goñi I, Garcia-Diz L, Mañas E, Saura-Calixto F (1996) Analysis of resistant starch: a method for foods and food products. Food Chem 56:445–449

    Article  Google Scholar 

  • Grisolia MJ, Peralta DA, Valdez HA, Barchiesi J, Gomez-Casati DF, Busi MV (2017) The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. Plant Mol Biol 93:121–135

    Article  CAS  PubMed  Google Scholar 

  • Guo HJ, Liu YC, Li X, Yan ZH, Xie YD, Xiong HC, Zhao LS, Gu JY, Zhao SR, Liu LX (2017) Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 18:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannah LC, James M (2008) The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 19:160–165

    Article  CAS  PubMed  Google Scholar 

  • Hasjim J, Ai Y, Jane JL (2013) Novel applications of amylose–lipid complex as resistant starch type 5. In: Shi YC, Maningat CC (eds) Resistant starch: sources, applications and health benefits, 1st edn. Wiley, New York, pp 79–94

    Chapter  Google Scholar 

  • Hazard B, Zhang XQ, Colasuonno P, Uauy C, Beckles DM, Dubcovsky J (2012) Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat. Crop Sci 52:1754–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazard B, Zhang XQ, Naemeh M, Hamilton MK, Rust B, Raybould HE, Newman JW, Martin R, Dubcovsky J (2015) Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Sci 55:2813–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennen-Bierwagen TA, Liu FS, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg AC, Gause K, Hofer P, Martin JM, Graybosch RA, Hansen LE, Giroux MJ (2013) Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa). J Cereal Sci 57:377–383

    Article  CAS  Google Scholar 

  • Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, Uauy C, Trafford K (2011) Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot 62:2217–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Le Leu RK, Christophersen CT, Somashekar R, Conlon MA, Meng XQ, Winter JM, Woodman RJ, McKinnon R, Young GP (2016) Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 37:366–375

    Article  CAS  PubMed  Google Scholar 

  • Huang HH, Xie SD, Xiao QL, Wei B, Zheng LJ, Wang YB, Cao Y, Zhang XG, Long TD, Li LY, Hu YF, Yu GW, Liu HM, Liu YH, Huang HZ, Zhang JJ, Huang YB (2016) Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci Rep 6:27590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iacovou M, Lim J, Maningat CC, Bogatyrev A, Ly E, Dhital S, Gidley MJ, Shi YC, Muir J, Seib PA (2017) In vivo digestibility of cross-linked phosphorylated (RS4) wheat starch in ileostomy subjects. Bioact Carbohydr Dietary Fibre 12:25–36

    Article  CAS  Google Scholar 

  • Igrejas G, Faucher B, Bertrand D, Guibert D, Leroy P, Branlard G (2002) Genetic analysis of the size of endosperm starch granules in a mapped segregating wheat population. J Cereal Sci 35:103–107

    Article  CAS  Google Scholar 

  • Itoh K, Ozaki H, Okada K, Hori H, Takeda Y, Mitsui T (2003) Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant Cell Physiol 44:473–480

    Article  CAS  PubMed  Google Scholar 

  • Jane JL (2007) Structure of starch granules. J Appl Glycosci 54:31–36

    Article  Google Scholar 

  • Jiang HX, Jane JL, Acevedo D, Green A, Shinn G, Schrenker D, Srichuwong S, Campbell S, Wu YS (2010) Variations in starch physicochemical properties from a generation-means analysis study using amylomaize V and VII parents. J Agric Food Chem 58:5633–5639

    Article  CAS  PubMed  Google Scholar 

  • Jiang LL, Yu XM, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu CF, Liu B, Pang JS (2013) Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res 22:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Jiao GA, Tang SQ, Luo J, Fitzgerald M, Roferos LT, Hu PS (2006) Comparative study on resistant starch structure of resistant starch enriched rice mutants. Chin J Rice Sci 20:645–648

    CAS  Google Scholar 

  • Jobling SA, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, Jeffcoat R, Safford R (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J 18:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kang HG, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911

    Article  CAS  PubMed  Google Scholar 

  • Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH (2016) Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 310:F857–F871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Kang HJ, Hwang IK, Hwang HG, Kim TY, Choi HC (2005) Fibrillar microfilaments associated with a high-amylose rice, Goami 2, a mutant of ilpumbyeo, a high-quality japonica rice. J Agric Food Chem 53:2600–2608

    Article  CAS  PubMed  Google Scholar 

  • Kotting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer HH, Pfahler PL, Whistler RL (1958) Gene interactions in maize affecting endosperm properties 1. Agron J 50:207–210

    Article  Google Scholar 

  • Lee HJ, Jee M-G, Kim J, Nogoy FMC, Niño MC, Yu D-A, Kim MS, Sun M, Kang K-K, Nou I, Cho Y-G (2014) Modification of starch composition using RNAi targeting soluble starch synthase I in Japonica rice. Plant Breed Biotechnol 2:301–312

    Article  Google Scholar 

  • Li L, Jiang HX, Campbell M, Blanco M, Jane JL (2008) Characterization of maize amylose-extender (ae) mutant starches. Part I: relationship between resistant starch contents and molecular structures. Carbohydr Polym 74:396–404

    Article  CAS  Google Scholar 

  • Li JR, Ye XG, An BY, Du LP, Xu HJ (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6:183–193

    Article  Google Scholar 

  • Li WH, Shan YL, Xiao XL, Luo QG, Zheng JM, Ouyang SH, Zhang GQ (2013) Physicochemical properties of A- and B-starch granules isolated from hard red and soft red winter wheat. J Agric Food Chem 61:6477–6484

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Guo HJ, Wang YB, Xie YD, Zhao LS, Gu JY, Zhao SR, Zhao BC, Wang GJ, Liu LX (2016) Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Genes Genomics 39:387–395

    Article  CAS  Google Scholar 

  • Li H, Xiao QL, Zhang CX, Du J, Li X, Huang HH, Wei B, Li YP, Yu GW, Liu HM, Hu YF, Liu YH, Zhang JJ, Huang YB (2017) Identification and characterization of transcription factor ZmEREB94 involved in starch synthesis in maize. J Plant Physiol 216:11–16

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li TD, Zhang Y, Wang YP, Zhao Q, Liu JX, Zhang HW, Liu CM, Ran YD, Gao CX (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin LS, Guo DW, Huang J, Zhang XD, Zhang L, Wei CX (2016) Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocoll 58:246–254

    Article  CAS  Google Scholar 

  • Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke 56:89–99

    Article  CAS  Google Scholar 

  • Liu DR, Huang WX, Cai XL (2013) Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Sci 210:141–150

    Article  CAS  PubMed  Google Scholar 

  • Liu XP, Zhao BM, Sun L, Bhuripanyo K, Wang YY, Bi YT, Davuluri RV, Duong DM, Nanavati D, Yin J, Kiyokawa H (2017) Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Nat Commun 8:14286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo XI, Huang JF, Zhu YS, Xie HG, Wu FX, Zhang MQ, Zhang JF, Xie HA (2014) Genetic analysis of high resistant starch characteristics for rice variety Gongmi 3 (Oryza sativa ssp. indica). J Agric Biotechnol 22:10–16

    CAS  Google Scholar 

  • Luo JX, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo VM Jr, Tanner GJ, Colgrave ML, Upadhyaya NM, Tetlow IJ, Emes MJ, Millar A, Jobling SA, Morell MK, Li Z (2015) The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theor Appl Genet 128:1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R, Sun DF, Ma WJ, Yan YM (2014) Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteomics 13:632–652

    Article  CAS  PubMed  Google Scholar 

  • Ma CY, Zhou JW, Chen GX, Bian YY, Lv DY, Li XH, Wang ZM, Yan YM (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 15:1029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacNeill GJ, Mehrpouyan S, Minow MA, Patterson JA, Tetlow IJ, Emes MJ (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453

    Article  CAS  PubMed  Google Scholar 

  • Makhmoudova A, Williams D, Brewer D, Massey S, Patterson J, Silva A, Vassall KA, Liu FS, Subedi S, Harauz G, Siu KW, Tetlow IJ, Emes MJ (2014) Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. J Biol Chem 289:9233–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinova I, Alseekh S, Feil R, Fernie AR, Baumann O, Schöttler MA, Lunn JE, Fettke J (2017) Starch synthase 4 and plastidal phosphorylase differentially affect starch granule number and morphology. Plant Physiol 174:73–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Ling HQ, Wan J (2018) Wheat functional genomics research in China: a decade of development. Crop J 6:1–6

    Article  CAS  Google Scholar 

  • McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J AOAC Int 85:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • McMaugh SJ, Thistleton JL, Anschaw E, Luo JX, Konik-Rose C, Wang H, Huang M, Larroque O, Regina A, Jobling SA, Morell MK, Li ZY (2014) Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. J Exp Bot 65:2189–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao HX, Sun PG, Liu WX, Xu BY, Jin ZQ (2014) Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit. PLoS ONE 9:e88077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mou FG, Yan ZW, Ran RL, Teng JX, Chen YB, Yang CZ, Li MH, Wu DX (2008) Preliminary studies on resistant starch-linked SSR marker in rice. Mol Plant Breed 6:432–438

    CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993a) Decrease of waxy (Wx) protein in two common wheat cultivars with low amylose content. Plant Breed 111:99–105

    Article  CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993b) Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem Genet 31:75–86

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Vrinten P, Hayakawa K, Ikeda J (1998) Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol 118:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakarnura T (1993) Three waxy protein in common wheat (Triticum aestivum L.). Wheat Inf Ser 76:49

    Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugent AP (2005) Health properties of resistant starch. Br Nutr Found Nutr Bull 30:27–54

    Article  Google Scholar 

  • Nunes FM, Lopes ES, Moreira AS, Simões J, Coimbra MA, Domingues RM (2016) Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: a model study. Carbohydr Polym 141:253–262

    Article  CAS  PubMed  Google Scholar 

  • Okumus BN, Tacer-Caba Z, Kahraman K, Nilufer-Erdil D (2018) Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chem 240:550–558

    Article  CAS  PubMed  Google Scholar 

  • Oladele EO (2016) The implications of sample preparation on the quantification of resistant starch type 1 and related nutritional starch fractions in plantain (Musa AAB). Food Anal Method 10:1909–1913

    Article  Google Scholar 

  • Peng MS, Gao M, Båga M, Hucl P, Chibbar RN (2000) Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol 124:165–272

    Article  Google Scholar 

  • Peng C, Wang YH, Liu F, Ren YL, Zhou KN, Lv J, Zheng M, Zhao SL, Zhang L, Wang CM, Jiang L, Zhang X, Guo XP, Bao YQ, Wan JM (2014) FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J 77:917–930

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ragaee S, Abdel-Aal ESM, Noaman M (2006) Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem 98:32–38

    Article  CAS  Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95:1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Raynaud S, Ragel P, Rojas T, Merida A (2016) The N-terminal part of Arabidopsis thaliana starch synthase 4 determines the localization and activity of the enzyme. J Biol Chem 291:10759–10771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regina A, Kosar-Hashemi B, Li Z, Rampling L, Cmiel M, Gianibelli MC, Konik-Rose C, Larroque O, Rahman S, Morell MK (2004) Multiple isoforms of starch branching enzyme-I in wheat: lack of the major SBE-I isoform does not alter starch phenotype. Funct Plant Biol 31:591–601

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li ZY, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S, Li ZY, Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regina A, Berbezy P, Kosar-Hashemi B, Li SZ, Cmiel M, Larroque O, Bird AR, Swain SM, Cavanagh C, Jobling SA, Li ZY, Morell M (2015) A genetic strategy generating wheat with very high amylose content. Plant Biotechnol J 13:1276–1286

    Article  CAS  PubMed  Google Scholar 

  • Ritte G, Heydenreich M, Mahlow S, Haebel S, Kotting O, Steup M (2006) Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett 580:4872–4876

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  PubMed  CAS  Google Scholar 

  • Safford R, Jobling SA, Sidebottom CM, Westcott RJ, Cooke D, Tober KJ, Strongitharm BH, Russell AL, Gidley MJ (1979) Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydr Polym 35:155–168

    Article  Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch—a review. Compr Rev Food Sci 5:1–17

    Article  CAS  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2017) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM, Sosinski B (2011) Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase. Biotechnol Prog 27:351–359

    Article  CAS  PubMed  Google Scholar 

  • Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones HD, Lafiandra D (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sestili F, Botticella E, Proietti G, Janni M, D’Ovidio R, Lafiandra D (2012) Amylose content is not affected by overexpression of the Wx-B1 gene in durum wheat. Plant Breed 131:700–706

    Article  CAS  Google Scholar 

  • Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D (2015) TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Sci 233:127–133

    Article  CAS  PubMed  Google Scholar 

  • Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC (2015) PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 13:e1002080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seung D, Lu KJ, Stettler M, Streb S, Zeeman SC (2016) Degradation of glucan primers in the absence of starch synthase 4 disrupts starch granule initiation in Arabidopsis. J Biol Chem 291:20718–20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung D, Boudet J, Monroe JD, Schreier TB, David LC, Abt M, Lu KJ, Zanella M, Zeeman SC (2017) Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves. Plant Cell 29:1657–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen WQ, Shu XW, Zhang LL, Xia YL, Wu DX (2006) Development and characteristics of processing-functional Indica early rice cultivar ‘Zhefu 201’. J Nucl Agric Sci 20:312–314

    Google Scholar 

  • Shimada T, Otani M, Hamada T, Kim SH (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol 23:85–90

    Article  CAS  Google Scholar 

  • Shu X, Rasmussen SK (2014) Quantification of amylose, amylopectin, and beta-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci 5:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu X, Backes G, Rasmussen SK (2012) Genome-wide association study of resistant starch (RS) phenotypes in a barley variety collection. J Agric Food Chem 60:10302–10311

    Article  CAS  PubMed  Google Scholar 

  • Siebert R (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt KM, Steine MN, Goodstal JF, Knauf VC (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song GY, Jia ML, Chen K, Kong XC, Khattak B, Xie CX, Li AL, Mao L (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82

    Article  Google Scholar 

  • Sparla F, Falini G, Botticella E, Pirone C, Talamè V, Bovina R, Salvi S, Tuberosa R, Sestili F, Trost P (2014) New starch phenotypes produced by TILLING in barley. PLoS ONE 9:e107779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stamova BS, Laudencia-Chingcuanco D, Beckles DM (2012) Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat. Int J Plant Genomics 2009:407–426

    Google Scholar 

  • Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    Article  CAS  PubMed  Google Scholar 

  • Stoddard FL, Sarker R (2000) Characterization of starch in Aegilops species. Cereal Chem J 77:445–447

    Article  CAS  Google Scholar 

  • Streb S, Zeeman SC (2014) Replacement of the endogenous starch debranching enzymes ISA1 and ISA2 of Arabidopsis with the rice orthologs reveals a degree of functional conservation during starch synthesis. PLoS ONE 9:e92174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subasinghe RM, Liu FS, Polack UC, Lee EA, Emes MJ, Tetlow IJ (2014) Multimeric states of starch phosphorylase determine protein–protein interactions with starch biosynthetic enzymes in amyloplasts. Plant Physiol Bioch 83:168–179

    Article  CAS  Google Scholar 

  • Sun YW, Jiao GA, Liu ZP, Zhang X, Li JY, Guo XP, Du WM, Du JL, Francis F, Zhao YD, Xia LQ (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298–312

    PubMed  PubMed Central  Google Scholar 

  • Taheri S, Abdullah TL, Jain SM, Sahebi M, Azizi P (2017) TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding. Mol Breed 37:40

    Article  CAS  Google Scholar 

  • Teng KK (2008) Research advancement and development prospect of high amylose maize. J Hebei Agric Sci 12:80–82

    Google Scholar 

  • Tetlow IJ (2010) Starch biosynthesis in developing seeds. Seed Sci Res 21:5–32

    Article  CAS  Google Scholar 

  • Tetlow IJ, Wait R, Lu ZX, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions. Plant Cell 16:694–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA 106:21760–21765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tickle P, Burrell MM, Coates SA, Emes MJ, Tetlow IJ, Bowsher CG (2009) Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm. J Plant Physiol 166:1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    Article  CAS  PubMed  Google Scholar 

  • Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, Toyooka K, Sato M, Ai Y, Jane JL, Nakamura Y, Fujita N (2016) Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol 170:1255–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vineyard ML, Bear RP (1952) Amylose content. Maize Genet Coop News Lett 26:5

    Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122:255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Shen ZX, Sartor R, Wu KJ, Osborn J, Smith LG, Briggs SP (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci USA 110:E4808–E4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li WH, Pang H, Yin YA, Yuan HG, Liu L (2009) Selection and verification of resistant starch-linked SSR marker in wheat. J Triticeae Crop 29:390–395

    CAS  Google Scholar 

  • Wang JC, Xu H, Zhu Y, Liu QQ, Cai XL (2013) OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot 64:3453–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu P, Chen ZC, Liu QQ, Wei CX (2017a) Progress in high-amylose cereal crops through inactivation of starch branching enzymes. Front Plant Sci 8:469

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Liu HY, Du LP, Ye XG (2017b) Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15:614–623

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Riaz B, Ye X (2018) Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J 6:22–31

    Article  CAS  Google Scholar 

  • Wei CX, Zhang J, Chen YF, Zhou WD, Xu B, Wang YP, Chen JM (2010) Physicochemical properties and development of wheat large and small starch granules during endosperm development. Acta Physiol Plant 32:905–916

    Article  Google Scholar 

  • Wilkens C, Cuesta-Seijo J, Palcic M, Svensson B (2014) Selectivity of the surface binding site (SBS) on barley starch synthase I. Biologia 69:1118–1121

    Article  CAS  Google Scholar 

  • Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Clay K, Thompson SS, Hennen-Bierwagen TA, Andrews BJ, Zechmann B, Gibbon BC (2015) Pullulanase and starch synthase III are associated with formation of vitreous endosperm in quality protein maize. PLoS ONE 10:e0130856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanouchi H, Nakamura Y (1992) Organ specificity of isoforms of starch branching enzyme (Q-Enzyme) in rice. Plant Cell Physiol 33:985–991

    CAS  Google Scholar 

  • Yang CZ, Li CS, Shu XL, Zhang ZZ, Zhang L, Zhao HJ, Ma CX, Wu DX (2005) Starch properties of rice mutant enriched with resistant starch. Chin J Rice Sci 19:516–520

    CAS  Google Scholar 

  • Yang RF, Sun CL, Bai JJ, Luo ZX, Shi B, Zhang JM, Yan WG, Piao ZZ (2012) A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.). PLoS ONE 7:e43026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang RF, Bai JJ, Fang J, Zeng W, Piao ZZ (2015) Establishment of marker-assisted selection system for breeding rice varieties with high resistant starch content. J Nucl Agric Sci 29:2259–2267

    CAS  Google Scholar 

  • Yang RF, Bai JJ, Fang J, Wang Y, Lee GS, Piao ZZ (2016) A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. Breed Sci 66:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Scheben A, Chan CKK, Edwards D (2017) Databases for wheat genomics and crop improvement. In: Clifton NJ (ed) Methods in molecular biology, 1st edn. Humana Press, New York, pp 277–291

    Google Scholar 

  • Zeng YW, Yang SM, Du J, Wu DX, Pu XY, Fang YA (2009) Research advancement of high resistant starch rice prevention chronic disease. Agric Sci Technol Newsl 1:37–39

    Google Scholar 

  • Zeng YW, Sun D, Du J, Pu XY, Yang SM, Yang XM, Yang T, Yang JZ (2016) Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice. Genet Mol Res 15:gmr-15037268

    Google Scholar 

  • Zhang SM, Zhang JM, Lee JR, Li MB, Wang H, Piao ZZ, Zou DT (2009) The difference between starch chain length distribution and main quality characteristics of high resistant starch lines of Japonica rice. Sci Agric Sin 42:2237–2243

    CAS  Google Scholar 

  • Zhang GY, Cheng ZJ, Zhang X, Guo XP, Su N, Jiang L, Mao L, Wan JM (2011a) Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome 54:448–459

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun J, Xiong HJ, Xu KS, Shu XL, Wu DX (2011b) Breeding and characteristics of high resistant starch indica rice for diabetes. Chin Rice 2011:63–65

    Google Scholar 

  • Zhang M, Ma CY, Lv DW, Zhen SM, Li XH, Yan YM (2014) Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. J Proteome Res 13:4281–4297

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Chen GX, Lv DW, Li XH, Yan YM (2015) N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome Res 14:1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang YP, Liu JX, Chen KL, Qiu JL, Gao CX (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Bai Y, Wu GG, Zou SG, Chen YF, Gao CX, Tang DZ (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li D, Zhang DB, Zhao XG, Cao XM, Dong LL, Liu JX, Chen KL, Zhang HW, Gao CX, Wang DW (2018) Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J 94:857–866

    Article  CAS  PubMed  Google Scholar 

  • Zhen SM, Deng X, Wang J, Zhu GR, Cao H, Yuan LL, Yan YM (2016) First comprehensive proteome analyses of lysine acetylation and succinylation in seedling leaves of Brachypodium distachyon L. Sci Rep 6:31576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou HJ, Wang LJ, Liu GF, Meng XB, Jing YH, Shu XL, Kong XL, Sun J, Yu H, Smith SM, Wu DX, Li JY (2016) Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci USA 113:12844–12849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu LJ, Gu MH, Meng XL, Cheung SC, Yu HX, Huang J, Sun Y, Shi YC, Liu QQ (2012) High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J 10:353–362

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Bertoft E, Källman A, Myers AM, Seetharaman K (2013) Molecular structure of starches from maize mutants deficient in starch synthase III. J Agric Food Chem 61:9899–9907

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Bertoft E, Seetharaman K (2014) Distribution of branches in whole starches from maize mutants deficient in starch synthase III. J Agric Food Chem 62:4577–4583

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Bertoft E, Li G (2016) Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III. J Agric Food Chem 64:6539–6545

    Article  CAS  PubMed  Google Scholar 

  • Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM (2018) Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 185:8–24

    Article  CAS  PubMed  Google Scholar 

  • Zong YA, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by grants from National Key R&D Program of China (2016YFD0100502) and the National Natural Science Foundation of China (31271703, 31771773).

Author information

Authors and Affiliations

Authors

Contributions

JX, DZ and RW performed most of the references collection and analysis and drafted the manuscript. YC performed part of the references collection and analysis. JX and YY designed and revised the manuscript. YY approved the final version.

Corresponding author

Correspondence to Yueming Yan.

Ethics declarations

Conflict of interest

On behalf of all authors, Yueming Yan states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Zhu, D., Wang, R. et al. Crop resistant starch and genetic improvement: a review of recent advances. Theor Appl Genet 131, 2495–2511 (2018). https://doi.org/10.1007/s00122-018-3221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3221-4

Navigation