Skip to main content
Log in

A multiple near isogenic line (multi-NIL) RNA-seq approach to identify candidate genes underpinning QTL

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study demonstrates how identification of genes underpinning disease-resistance QTL based on differential expression and SNPs can be improved by performing transcriptomic analysis on multiple near isogenic lines.

Abstract

Transcriptomic analysis has been widely used to understand the genetic basis of a trait of interest by comparing genotypes with contrasting phenotypes. However, these approaches identify such large sets of differentially expressed genes that it proves difficult to isolate which genes underpin the phenotype of interest. This study tests whether using multiple near isogenic lines (NILs) can improve the resolution of RNA-seq-based approaches to identify genes underpinning disease-resistance QTL. A set of NILs for a major effect Fusarium crown rot-resistance QTL in barley on the 4HL chromosome arm were analysed under Fusarium crown rot using RNA-seq. Differential gene expression and single nucleotide polymorphism detection analyses reduced the number of putative candidates from thousands within individual NIL pairs to only one hundred and two genes, which were differentially expressed or contained SNPs in common across NIL pairs and occurred on 4HL. Our findings support the value of performing RNA-seq analysis using multiple NILs to remove genetic background effects. The enrichment analyses indicated conserved differences in the response to infection between resistant and sensitive isolines suggesting that sensitive isolines are impaired in systemic defence response to Fusarium pseudograminearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts M, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinsanmi O, Mitter V, Simpfendorfer S, Backhouse D, Chakraborty S (2004) Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Crop Pasture Sci 55:97–107

    Article  Google Scholar 

  • Bai Z, Liu C (2015) Histological evidence for different spread of Fusarium crown rot in barley genotypes with different heights. J Phytopathol 163:91–97

    Article  CAS  Google Scholar 

  • Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol 16:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt TO, Richardson A, Dagdas YF, Mongrand S, Kamoun S, Raffaele S (2014) The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to phytophthora infestans. Plant Physiol 165(3):1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Liu C, Mitter V, Scott J, Akinsanmi O, Ali S, Dill-Macky R, Nicol J, Backhouse D, Simpfendorfer S (2006) Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australas Plant Pathol 35:643–655

    Article  Google Scholar 

  • Chen G, Liu Y, Ma J, Zheng Z, Wei Y, McIntyre CL, Zheng Y-L, Liu C (2013a) A novel and major quantitative trait locus for Fusarium crown rot resistance in a genotype of wild barley (Hordeum spontaneum L.). PLoS One 8:e58040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Liu Y, Wei Y, McIntyre C, Zhou M, Zheng Y-L, Liu C (2013b) Major QTL for Fusarium crown rot resistance in a barley landrace. Theor Appl Genet 126:2511–2520

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yan W, Liu Y, Wei Y, Zhou M, Zheng Y-L, Manners JM, Liu C (2014) The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley. BMC Plant Biol 14(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Habib A, Wei Y, Zheng Y-L, Shabala S, Zhou M, Liu C (2015) Enhancing Fusarium crown rot resistance by pyramiding large-effect QTL in barley. Mol Breed 35:1–8

    Article  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Desmond OJ, Manners JM, Schenk PM, Maclean DJ, Kazan K (2008) Gene expression analysis of the wheat response to infection by Fusarium pseudograminearum. Physiol Mol Plant Pathol 73(1–3):40–47

    Article  CAS  Google Scholar 

  • Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6:e19008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8:e1002952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelli M, Konda AR, Liu K, Zhang C, Clemente TE, Holding DR, Dweikat IM (2017) Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC Plant Biol 17:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib A, Shabala S, Shabala L, Zhou M, Liu C (2016) Near-isogenic lines developed for a major QTL on chromosome arm 4HL conferring Fusarium crown rot resistance in barley. Euphytica 209:555–563

    Article  CAS  Google Scholar 

  • Hofstad AN, Nussbaumer T, Akhunov E, Shin S, Kugler KG, Kistler HC, Mayer KF, Muehlbauer GJ (2016) Examining the transcriptional response in wheat near-isogenic lines to infection and deoxynivalenol treatment. Plant Genome. https://doi.org/10.3835/plantgenome2015.05.0032

    PubMed  Google Scholar 

  • Huang Y, Li L, Smith KP, Muehlbauer GJ (2016) Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genom 17:387

    Article  Google Scholar 

  • Kazan K, Gardiner DM (2017) Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. Mol Plant Pathol. https://doi.org/10.1111/mpp.12561

    Google Scholar 

  • Keurentjes JJ, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kugler KG, Siegwart G, Nussbaumer T, Ametz C, Spannagl M, Steiner B, Lemmens M, Mayer KF, Buerstmayr H, Schweiger W (2013) Quantitative trait loci-dependent analysis of a gene co-expression network associated with Fusarium head blight resistance in bread wheat (Triticum aestivum L.). BMC Genom 14:1

    Article  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci 107:2343–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu C, Chakraborty S, Manners JM, Kazan K (2008) A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. J Phytopathol 156:751–754

    Article  Google Scholar 

  • Li H, Zhou M, Liu C (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang X, Ma J, Wei Y, Zheng Y, Ma H, Yao J, Yan G, Wang Y, Manners J (2010) Plant height affects Fusarium crown rot severity in wheat. Phytopathology 100:1276–1281

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ma J, Yan W, Yan G, Zhou M, Wei Y, Zheng Y, Liu C (2012) Different tolerance in bread wheat, durum wheat and barley to Fusarium crown rot disease caused by Fusarium pseudograminearum. J Phytopathol 160:412–417

    Article  Google Scholar 

  • Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Li X, Xie C (2016a) Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genom 17:915

    Article  Google Scholar 

  • Liu D, Zhang J, Liu X, Wang W, Liu D, Teng Z, Fang X, Tan Z, Tang S, Yang J (2016b) Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T 1 region in upland cotton. BMC Genom 17:295

    Article  Google Scholar 

  • Ma J, Yan G, Liu C (2012) Development of near-isogenic lines for a major QTL on 3BL conferring Fusarium crown rot resistance in hexaploid wheat. Euphytica 183:147–152

    Article  Google Scholar 

  • Ma J, Jiang Q-T, Zhang X-W, Lan X-J, Pu Z-E, Wei Y-M, Liu C, Lu Z-X, Zheng Y-L (2013a) Structure and expression of barley starch phosphorylase genes. Planta 238:1081–1093

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jiang Q-T, Zhao Q-Z, Zhao S, Lan X-J, Dai S-F, Lu Z-X, Liu C, Wei Y-M, Zheng Y-L (2013b) Characterization and expression analysis of waxy alleles in barley accessions. Genetica 141:227–238

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Stiller J, Zhao Q, Feng Q, Cavanagh C, Wang P, Gardiner D, Choulet F, Feuillet C, Zheng Y-L (2014) Transcriptome and allele specificity associated with a 3BL locus for fusarium crown rot resistance in bread wheat. PLoS One 9:e113309

    Article  PubMed  PubMed Central  Google Scholar 

  • Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J (2012) Salicylic acid regulates basal resistance to Fusarium head blight in wheat. MPMI 25:431–439

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Murray G, Brennan J (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39:85–96

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel R, Berasategui A, Paetz C, Gershenzon J, Schmidt A (2014) Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. Plant Phys 164:555–569

    Article  CAS  Google Scholar 

  • Pankratov I, McQuinn R, Schwartz J, Bar E, Fei Z, Lewinsohn E, Zamir D, Giovannoni JJ, Hirschberg J (2016) Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant J 88:82–94

    Article  CAS  PubMed  Google Scholar 

  • Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, Henry RJ, Kazan K (2016) The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol J 15:533–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell JJ, Carere J, Fitzgerald T, Stiller J, Covarelli L, Xu Q, Gubler F, Colgrave ML, Gardiner DM, Manners J, Henry RJ, Kazan K (2017) The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Ann Bot 119:853–867

    PubMed  Google Scholar 

  • Qi P-F, Johnston A, Balcerzak M, Rocheleau H, Harris LJ, Long X-Y, Wei Y-M, Zheng Y-L, Ouellet T (2012) Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol 116:413–426

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, Retana SG, Boubekeur T, Leborgne-Castel N, Carde J-P, Lherminier J, Noirot E (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21:1541–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Powell JJ, Kazan K (2017) Emerging roles and landscape of translating mRNAs in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01443

    Google Scholar 

  • Samad-Zamini M, Schweiger W, Nussbaumer T, Mayer KF, Buerstmayr H (2017) Time-course expression QTL-atlas of the global transcriptional response of wheat to Fusarium graminearum. Plant Biotechnol J. https://doi.org/10.1111/pbi.12729

    PubMed  PubMed Central  Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA, Patterson L-M, Whittaker RG (2005) Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis 89:595–604

    Article  Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  CAS  PubMed  Google Scholar 

  • Stephen S, Cullerne D, Spriggs A, Helliwell C, Lovell D, Taylor J (2012) Biokanga: a suite of high performance bioinformatics applications. https://github.com/csiro-crop-informatics/biokanga. Accessed 15 Sept 2017

  • Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326(5956):118–1120

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St. Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genom 14:1

    Article  Google Scholar 

  • Ye J, Yang Y, Chen B, Shi J, Luo M, Zhan J, Wang X, Liu G, Wang H (2017) An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genom 18:71

    Article  Google Scholar 

Download references

Acknowledgements

Work reported in this publication was partially funded by the Grains Research and Development Corporation, Australia (Project no. CFF00010). AH is grateful to University of Tasmania, Australia, and Khulna University, Bangladesh, for financial supports during the tenure of his Ph.D. studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunji Liu.

Additional information

Communicated by Hermann Buerstmayr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, A., Powell, J.J., Stiller, J. et al. A multiple near isogenic line (multi-NIL) RNA-seq approach to identify candidate genes underpinning QTL. Theor Appl Genet 131, 613–624 (2018). https://doi.org/10.1007/s00122-017-3023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-3023-0

Navigation