Skip to main content
Log in

Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new epicuticular wax (bloom) locus has been identified and fine mapped to the 207.89 kb genomic region on chromosome 1. A putative candidate gene, Sobic.001G269200, annotated as GDSL-like lipase/acylhydrolase, is proposed as the most probable candidate gene involved in bloom synthesis/deposition.

Abstract

Deposition of epicuticular wax on plant aerial surface is one strategy that plants adapt to reduce non-transpiration water loss. Epicuticular wax (bloom)-less mutants in sorghum with their glossy phenotypes exhibit changes in the accumulation of epicuticular wax on leaf and culm surfaces. We report molecular mapping of a new sorghum locus, bloomless mutant (bm39), involved in epicuticular wax biosynthesis in sorghum. Inheritance studies involving a profusely bloom parent (BTx623) and a spontaneous bloomless mutant (RS647) indicated that the parents differed in a single gene for bloom synthesis. Bloomless was recessive to bloom deposition. Genetic mapping involving F2 and F7 mapping populations in diverse genetic backgrounds (BTx623 × RS647; 296A × RS647 and 27A × RS647) identified and validated the map location of bm39 to a region of 207.89 kb on chromosome 1. SSR markers, Sblm13 and Sblm16, flanked the bm39 locus to a map interval of 0.3 cM on either side. Nine candidate genes were identified, of which Sobic.001G269200 annotated for GDSL-like lipase/acylhydrolase is the most likely gene associated with epicuticular wax deposition. Gene expression analysis in parents, isogenic lines and sets of near isogenic lines also confirmed the reduced expression of the putative candidate gene. The study opens possibilities for a detailed molecular analysis of the gene, its role in epicuticular wax synthesis and deposition, and may help to understand its function in moisture stress tolerance and insect and pathogen resistance in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CMS:

Cytoplasmic male sterility

CTAB:

Cetyltrimethylammonium bromide

dNTP:

Deoxynucleotide triphosphate

GBSS:

Granule-bound starch synthase

GDSL:

Glycine aspartic (glutamic) serine leucine

ORF:

Open reading frame

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptase polymerase chain reaction

SNP:

Single nucleotide polymorphism

SSRs:

Simple sequence repeats

References

  • Aarts M, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akin D, Hanna W, Rigsby L (1986) Normal-12 and brown midrib-12 sorghum. I. Variations in tissue digestibility. Agron J 78:827–832

    Article  Google Scholar 

  • Akoh CC, Lee G-C, Liaw Y-C, Huang T-H, Shaw J-F (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1999) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Ayyangar G, Ponnaiya B (1941) The occurrence and inheritance of a bloomless sorghum. Curr Sci 10:408–409

    Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin J-P, Miquel M, Tellier F (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci 105:14727–14731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barozai MYK, Husnain T (2014) Development and characterization of the asiatic desi cotton (Gossypium arboreum L.) leaf epicuticular wax mutants. Pak J Bot 46:639–643

    Google Scholar 

  • Beattie G, Marcell L (2002) Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant Cell Environ 25:1–16

    Article  CAS  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G, Avato P, Bertorelli P, Mariani G (1978) Epicuticular waxes of two sorghum varieties. Phytochemistry 17:999–1001

    Article  CAS  Google Scholar 

  • Blum A (1975) Effect of the Bm gene on epicuticular wax deposition and the spectral characteristics of sorghum leaves. SABRAO J 7:45–52

    Google Scholar 

  • Blum A (2004) Sorghum physiology. Physiology and biotechnology integration for plant breeding. CRC Press, Boca Raton, pp 141–224

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown S, Hopkins M, Mitchell S, Senior M, Wang T, Duncan R, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198

    Article  CAS  PubMed  Google Scholar 

  • Burow GB, Franks CD, Xin Z (2008) Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular Wax mutant) of sorghum. Crop Sci 48:41

    Article  Google Scholar 

  • Burow GB, Franks CD, Acosta-Martinez V, Xin Z (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). TAG Theor Appl Genet 118:423–431

    Article  CAS  PubMed  Google Scholar 

  • Burow G, Klein R, Franks C, Klein P, Schertz K, Pederson G, Xin Z, Burke J (2011) Registration of the BTx623/IS3620C recombinant inbred mapping population of sorghum. J Plant Regist 5:141–145

    Article  Google Scholar 

  • Calvino MMJ (2012) Sweet Sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23:323–329

    Article  CAS  PubMed  Google Scholar 

  • Chatterton NJ, Hanna WW, Powell JB, Lee DR (1975) Photosynthesis and transpiration of bloom and bloomless sorghum. Can J Plant Sci 55:641–643

    Article  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87(88):925–933

    CAS  PubMed  Google Scholar 

  • Cummins DG, Dobson JW Jr (1972) Digestibility of bloom and bloomless sorghum leaves as determined by a modified in vitro technique. Agron J 64:682–683

    Article  Google Scholar 

  • Cummins DG, Sudweeks EM (1976) In vivo performance of bloom and bloomless sorghum forage. Agron J 68:735–737

    Article  Google Scholar 

  • Ebercon A, Blum A, Jordan W (1977) A rapid colorimetric method for epicuticular wax contest of sorghum leaves. Crop Sci 17:179–180

    Article  Google Scholar 

  • FAO (2015) Food and Agricultural Organisation. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Gan L, Wang X, Cheng Z, Liu L, Wang J, Zhang Z, Ren Y, Lei C, Zhao Z, Zhu S (2016) Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Rep 35:1687–1698

    Article  CAS  PubMed  Google Scholar 

  • Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haley SD, Afanador L, Miklas P, Stavely J, Kelly JD (1994) Heterogeneous inbred populations are useful as sources of near-isogenic lines for RAPD marker localization. Theor Appl Genet 88:337–342

    CAS  PubMed  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Tuinstra MR, Rooney WL, Kresovich S (2007) Sequence variation at candidate loci in the starch metabolism pathway in sorghum: prospects for linkage disequilibrium mapping. Crop Sci 47:S125–S134

    Article  Google Scholar 

  • Holloway P, Brown G, Baker E, Macey M (1977) Chemical composition and ultrastructure of the epicuticular wax in three lines of Brassica napus (L). Chem Phys Lipid 19:114–127

    Article  CAS  Google Scholar 

  • Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenks MA, Rich PJ, Rhodes D, Ashworth EN, Axtell JD, Ding C-K (2000) Leaf sheath cuticular waxes on bloomless and sparse-bloom mutants of Sorghum bicolor. Phytochemistry 54:577–584

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville, p e0016

    Google Scholar 

  • Jiao Y, Burke J, Chopra R, Burow G, Chen J, Wang B, Hayes C, Emendack Y, Ware D, Xin Z (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan W, Monk R, Miller F, Rosenow D, Clark L, Shouse P (1983) Environmental physiology of sorghum. I. Environmental and genetic control of epicuticular wax load. Crop Sci 23:552–558

    Article  Google Scholar 

  • Jordan W, Shouse P, Blum A, Miller F, Monk R (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24:1168–1173

    Article  Google Scholar 

  • Kasuga S, Inoue N, Kaidai H, Watanabe H (2001) Effects of brown midrib and bloomless genes on the resistance to sheath blight (Rhizoctonia solani Kuehn) in sorghum. J Jpn Soc Grassl Sci 46:28–33

    Google Scholar 

  • Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong LDJ, Hart GE (2000) Characteristics, linkage map positions and allelic differentiation of Sorghum bicolor (L). Monech DNA simple-sequence repeats (SSRs). TAG Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugenics 797:172–175

    Google Scholar 

  • Kunst L, Samuels A (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Métraux J-P (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yang K, Lee M, Kim S, Kim J, Lim S, Kang G-H, Min SR, Kim S-J, Park SU (2015) Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochem 50:456–462

    Article  CAS  Google Scholar 

  • Li L, Li D, Liu S, Ma X, Dietrich CR, Hu H-C, Zhang G, Liu Z, Zheng J, Wang G (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Cao Y, Wu Y, Li Y, Wu G (2014) BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS One 9:e110272

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu P, Qin J, Wang G, Wang L, Wang Z, Wu Q, Xie J, Liang Y, Wang Y, Zhang D (2015) Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat. Theor Appl Genet 128:1595–1603

    Article  CAS  PubMed  Google Scholar 

  • Madhusudhana R, Patil JV (2013) A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 191:259–268

    Article  Google Scholar 

  • Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39–52

    Article  CAS  PubMed  Google Scholar 

  • McIntyre C, Drenth J, Gonzalez N, Henzell R, Jordan D (2008) Molecular characterization of the waxy locus in sorghum. Genome 51:524–533

    Article  CAS  PubMed  Google Scholar 

  • Meeks M, Murray S, Hague S, Hays D, Ibrahim A (2012) Genetic variation for maize epicuticular wax response to drought stress at flowering. J Agron Crop Sci 198:161–172

    Article  Google Scholar 

  • Menz MA, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Biol 48(45–46):483–499

    Article  CAS  PubMed  Google Scholar 

  • Michelmore R, Paran I (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno H, Kawahigashi H, Ogata J, Minami H, Kanamori H, Nakagawa H, Matsumoto T (2013) Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum. TAG Theor Appl Genet 126:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Toole J, Cruz R (1983) Genotypic variation in epicuticular wax of rice. Crop Sci 23:392–394

    Article  Google Scholar 

  • Pasha M, Ahmad HM, Qasim M, Javed I (2015) Performance evaluation of zinnia cultivars for morphological traits under the Agro-climatic conditions of Faisalabad. Eur J Biotechnol Biosci 3(1):35–38

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peters PJ, Jenks MA, Rich PJ, Axtell JD, Ejeta G (2009) Mutagenesis, selection, and allelic analysis of epicuticular wax mutants in sorghum. Crop Sci 49:1250–1258

    Article  CAS  Google Scholar 

  • Peterson GC, Suksayretrup K, Weibel DE (1979) Inheritance and interrelationships of bloomless and sparse-bloom mutants in sorghum. Sorghum Newslett 22:30

    Google Scholar 

  • Peterson G, Suksayretrup K, Weibel D (1982) Inheritance of some bloomless and sparse-bloom mutants in sorghum. Crop Sci 22:63–67

    Article  Google Scholar 

  • Porter K, Axtell J, Lechtenberg V, Colenbrander V (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  • Premachandra GS, Hahn DT, Axtell JD, Joly RJ (1994) Epicuticular wax load and water-use efficiency in bloomless and sparse-bloom mutants of Sorghum bicolor L. Environ Exp Bot 34:293–301

    Article  Google Scholar 

  • Punnuri S, Harris-Shultz K, Knoll J, Ni X, Wang H (2017) The genes and that affect epicuticular wax deposition in sorghum are allelic. Crop Sci 57:1552–1556

    Article  Google Scholar 

  • Qin YM, Pujol FM, Shi YH, Feng JX, Liu YM, Kastaniotis AJ, Hiltunen JK, Zhu YX (2005) Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Res 15:465–473

    Article  CAS  PubMed  Google Scholar 

  • Reina JJ, Guerrero C, Heredia A (2007) Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis. J Exp Bot 58:2717–2731

    Article  CAS  PubMed  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin 1(2):147–157

    Article  CAS  Google Scholar 

  • Rosenow D, Quisenberry J, Wendt C, Clark L (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Ross W (1972) Effects of bloomless (blbl) on yield in combine Kafir-60. Sorghum Newslett 15:121

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambusiti C, Ficara E, Malpei F, Steyer J, Carrère H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456

    Article  CAS  Google Scholar 

  • Samuels L, DeBono A, Lam P, Wen M, Jetter R, Kunst L (2008) Use of Arabidopsis eceriferum mutants to explore plant cuticle biosynthesis. J Vis Exp. doi:10.3791/3709

    PubMed Central  PubMed  Google Scholar 

  • Schloss S, Mitchell S, White G, Kukatla R, Bowers J, Paterson A, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920

    Article  CAS  PubMed  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan X, Yan S, Tan R, Zhang Z, Wang Z, Chen J (2014) Characterization and expression of a GDSL-like lipase gene from Brassica napus in Nicotiana benthamiana. Protein J 33:18–23

    Article  CAS  PubMed  Google Scholar 

  • Tarumoto I, Miyazaki M, Matsumura T (1981) Scanning electron microscopic study of the surfaces of glossy and non-glossy leaves in sorghum, Sorghum bicolor (L.) Moench. Bull Natl Grassl Res Inst 18:38–44

    Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra M, Ejeta G, Goldsbrough P (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Uddin MN, Marshall D (1988) Variation in epicuticular wax content in wheat. Euphytica 38:3–9

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips R (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, pp 1–51

    Google Scholar 

  • Wang P, Liu C, Wang D, Liang C, Zhao K, Fan J (2013) Isolation of resistance gene analogs from grapevine resistant to downy mildew. Sci Hortic 150:326–333

    Article  CAS  Google Scholar 

  • Webster O, Schmalzel C (1979) Yield traits of isogenic lines, normal vs. bloomless. Sorghum Newsl 22:24

    Google Scholar 

  • Weibel D, Starks K (1986) Greenbug nonpreference for bloomless sorghum. Crop Sci 26:1151–1153

    Article  Google Scholar 

  • Yanagisawa T, Kiribuchi-Otobe C, Yoshida H (2001) An alanine to threonine change in the Wx-D1 protein reduces GBSS I activity in waxy mutant wheat. Euphytica 121:209–214

    Article  CAS  Google Scholar 

  • Yeats TH, Howe KJ, Matas AJ, Buda GJ, Thannhauser TW, Rose JK (2010) Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. J Exp Bot 61:3759–3771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeats TH, Martin LB, Viart HM, Isaacson T, He Y, Zhao L, Matas AJ, Buda GJ, Domozych DS, Clausen MH (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8:609–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeri SB, Shirasawa K, Pandey MK, Gowda MVC, Sujay V, Shriswathi M, Nadaf HL, Motagi BN, Lingaraju S, Bhat ARS, Varshney RK, Krishnaraj PU, Bhat RS, Link W (2014) Development of NILs from heterogeneous inbred families for validating the rust resistance QTL in peanut (Arachis hypogaea L.). Plant Breed 133:80–85

    Article  CAS  Google Scholar 

  • Yonemaru J-I, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax Crystal-Sparse Leaf1 encodes a beta-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228:675–685

    Article  CAS  PubMed  Google Scholar 

  • Zhang H (2012) Study on the relationship between epicuticular wax content of barley leaves and drought resistance. Xinjiang Agric Sci 1:003

    Google Scholar 

  • Zhang X, Liu Z, Wang P, Wang Q, Yang S, Feng H (2013) Fine mapping of Br Wax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 32:867–874

    Article  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Ni E, Yang J, Zhou H, Liang H, Li J, Jiang D, Wang Z, Liu Z, Zhuang C (2013) Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One 8:e65139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X (2015) OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS One 10:e116676

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the anonymous reviewers and the editor for their excellent comments and suggestions, which greatly improved the quality of the manuscript. We also thank the Director, ICAR-IIMR, Rajendranagar, Hyderabad, for the facilities for undertaking this study. We thank Dr. P. G. Padmaja (IIMR) for extending facilities for wax estimation, Dr. P. Rajendrakumar (IIMR) and Dr. M. Sheshu Madav (IIRR) for facilitating RNA expression studies and Dr. D. Sanjeev Rao (IIRR) for his suggestions in peptide analysis. The help of Mr. Jai Kishan, M. Bhaskar and M. Shankariah in conducting laboratory and field works is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

The authors declare that no ethical standards have been violated in the course of the study.

Additional information

Communicated by Antonio Augusto Franco Garcia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uttam, G.A., Praveen, M., Rao, Y.V. et al. Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 130, 2109–2125 (2017). https://doi.org/10.1007/s00122-017-2945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2945-x

Navigation