Skip to main content
Log in

QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified QTL associated with protein and amino acids in a soybean mapping population that was grown in five environments. These QTL could be used in MAS to improve these traits.

Abstract

Soybean, rather than nitrogen-containing forages, is the primary source of quality protein in feed formulations for domestic swine, poultry, and dairy industries. As a sole dietary source of protein, soybean is deficient in the amino acids lysine (Lys), threonine (Thr), methionine (Met), and cysteine (Cys). Increasing these amino acids would benefit the feed industry. The objective of the present study was to identify quantitative trait loci (QTL) associated with crude protein (cp) and amino acids in the ‘Benning’ × ‘Danbaekkong’ population. The population was grown in five southern USA environments. Amino acid concentrations as a fraction of cp (Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met + Cys/cp) were determined by near-infrared reflectance spectroscopy. Four QTL associated with the variation in crude protein were detected on chromosomes (Chr) 14, 15, 17, and 20, of which, a QTL on Chr 20 explained 55 % of the phenotypic variation. In the same chromosomal region, QTL for Lys/cp, Thr/cp, Met/cp, Cys/cp and Met + Cys/cp were detected. At these QTL, the Danbaekkong allele resulted in reduced levels of these amino acids and increased protein concentration. Two additional QTL for Lys/cp were detected on Chr 08 and 20, and three QTL for Thr/cp on Chr 01, 09, and 17. Three QTL were identified on Chr 06, 09 and 10 for Met/cp, and one QTL was found for Cys/cp on Chr 10. The study provides information concerning the relationship between crude protein and levels of essential amino acids and may allow for the improvement of these traits in soybean using marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annicchiarico P (2002) Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. Food & Agriculture Org

  • Bajjalieh N (2004) Proteins from oilseeds. In: Proceedings on Protein sources for the animal feed industry. Expert consultation and workshop, Bangkok

  • Boerma HR, Hussey RS, Phillips DV, Wood ED, Rowan GB, Finnerty SL (1997) Registration of ‘Benning’ soybean. Crop Sci 37:1982

    Article  Google Scholar 

  • Boerma H, Hussey R, Phillips D, Wood E, Rowan G, Finnerty S (2000) Registration of ’Boggs’ soybean. Crop Sci 40(1):294–295

    Article  Google Scholar 

  • Brim C (1966) A modified pedigree system of selection in soybeans. Crop Sci 6:220

    Article  Google Scholar 

  • Brummer E, Graef G, Orf J, Wilcox J, Shoemaker R (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37(2):370–377

    Article  Google Scholar 

  • Burton J, Wilson T (1998) Registration of ‘Prolina’soybean. Crop Sci 39(1):294

    Article  Google Scholar 

  • Burton J, Carter T Jr, Bowman D (2005) Registration of NC-Roy soybean. Crop Sci 45:2654

    Article  Google Scholar 

  • Chung J, Babka H, Graef G, Staswick P, Lee D, Cregan P, Shoemaker R, Specht J (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43(3):1053

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke E, Wiseman J (2000) Developments in plant breeding for improved nutritional quality of soya beans I. Protein and amino acid content. The Journal of Agricultural Science 134(02):111–124

    Article  CAS  Google Scholar 

  • Council NR (1994) Nutrient Requirements of Poultry. National Academy Press, Washington

    Google Scholar 

  • Council NR (ed) (1998) Nutrient Requirements of Swine, 10th edn. National Academy Press, Washington

    Google Scholar 

  • Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128(1):46–53

    Article  CAS  Google Scholar 

  • Danielsson C (1949) Seed globulins of the Gramineae and Leguminosae. Biochem J 44(4):387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diers B, Keim P, Fehr W, Shoemaker R (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83(5):608–612

    Article  CAS  PubMed  Google Scholar 

  • Diwan N, Cregan P (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. TheorApplGen 95(5):723–733

    Article  CAS  Google Scholar 

  • Edwards H 3rd, Douglas M, Parsons C, Baker D (2000) Protein and energy evaluation of soybean meals processed from genetically modified high-protein soybeans. Poult Sci 79(4):525

    Article  CAS  PubMed  Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics (1996). Longman, Essex

    Google Scholar 

  • Fallen B, Hatcher C, Allen F, Kopsell D, Saxton A, Chen P, Kantartzi S, Cregan P, Hyten D, Pantalone V (2013) Soybean Seed Amino Acid Content QTL Detected Using the Universal Soy Linkage Panel 1.0 with 1,536 SNPs. J Plant Genome Sci 1(3):68–79

    Google Scholar 

  • Friedman M, Brandon D (2001) Nutritional and Health Benefits of Soy Proteins. J Agric Food Chem 49(3):1069–1086

    Article  CAS  PubMed  Google Scholar 

  • George AA, De Lumen BO (1991) A novel methionine-rich protein in soybean seed: identification, amino acid composition, and N-terminal sequence. J Agric Food Chem 39(1):224–227

    Article  CAS  Google Scholar 

  • Grant D, Imsande MI, Shoemaker RC (2002) SoyBase, the USDA-ARS soybean genome database. http://soybase.org. Accessed 8 Feb 2015

  • Hyten D, Song Q, Choi I, Yoon M, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116(7):945–952

    Article  CAS  PubMed  Google Scholar 

  • Hyten D, Choi I, Song Q, Specht J, Carter Jr T, Shoemaker R, Hwang E, Matukumalli L, Cregan P (2010a) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping

  • Hyten DL, Choi IY, Song Q, Specht JE, Carter TE Jr, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010b) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50(3):960–968

    Article  CAS  Google Scholar 

  • Imsande J (2001) Selection of soybean mutants with increased concentrations of seed methionine and cysteine. Crop Sci 41(2):510–515

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136(4):1447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keim P, Shoemaker RC, Palmer RG (1989) Restriction fragment length polymorphism diversity in soybean. Theorical and Applied Genetics 77:786–792

    Article  CAS  Google Scholar 

  • Kerley MS, Allee GL (2003) Modifications in soybean seed composition to enhance animal feed use and value: moving from a dietary ingredient to a functional dietary component. AgBioForum 6(1&2):14–17. http://www.agbioforum.org. Accessed 8 Feb 2015

    Google Scholar 

  • Kim S-D, Hong E-H, Kim Y-H, Lee S-H, Seong Y-K, Park K-Y, Lee Y-H, Hwang Y-H, Park E-H, Kim H-S, Ryu Y-H, Park R-K, Kim Y-S (1996) A new high protein and good seed quality soybean variety “Danbaegkong”. RDA J Agri Sci Upl Ind Crops 38:228–232

    Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12(1944):172–175

    Google Scholar 

  • Krober O (1956) Nutritive quality of crops, methionine content of soybeans as influenced by location and season. J Agric Food Chem 4(3):254–257

    Article  CAS  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235. doi:10.1007/s11032-012-9706-y

    Article  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25(1):511–581

    Article  CAS  PubMed  Google Scholar 

  • Mansur L, Lark K, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). TAG. Theor Appl Genet 86(8):907–913

    CAS  PubMed  Google Scholar 

  • Martin OC (2006) Two-and three-locus tests for linkage analysis using recombinant inbred lines. Genetics 173(1):451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols D, Glover K, Carlson S, Specht J, Diers B (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46(2):834

    Article  Google Scholar 

  • Nyquist W, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10(3):235–322

    Article  Google Scholar 

  • Panthee D, Kwanyuen P, Sams C, West D, Saxton A, Pantalone V (2004) Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc 81(11):1005–1012

    Article  CAS  Google Scholar 

  • Panthee D, Pantalone V, Sams C, Saxton A, West D, Orf J, Killam A (2006a) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet 112(3):546–553

    Article  CAS  PubMed  Google Scholar 

  • Panthee D, Pantalone V, Saxton A, West D, Sams C (2006b) Genomic regions associated with amino acid composition in soybean. Mol Breeding 17(1):79–89

    Article  CAS  Google Scholar 

  • Rajcan I, Hou G, Weir A (2005) Advances in breeding of seed-quality traits in soybean. J Crop Improv 14(1):145–174

    Article  Google Scholar 

  • Sallstrom JR (2002) Better Bean Initiative (BBI)—a tool to enhance competitiveness for the US soybean producer. In: Biennial Conference of the Cellular and Molecular Biology of the Soybean, Urbana-Champaign, 11–14 Aug 2002

  • Sebolt A, Shoemaker R, Diers B (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40(5):1438

    Article  CAS  Google Scholar 

  • Serretti C, Schapaugh W Jr, Leffel R (1994) Amino acid profile of high seed protein soybean. Crop Sci 34(1):207

    Article  CAS  Google Scholar 

  • Sexton P, Naeve S, Paek N, Shibles R (1998a) Sulfur availability, cotyledon nitrogen: sulfur ratio, and relative abundance of seed storage proteins of soybean. Crop Sci 38(4):983–986

    Article  CAS  Google Scholar 

  • Sexton PJ, Paek NC, Shibles RM (1998b) Effects of nitrogen source and timing of sulfur deficiency on seed yield and expression of 11S and 7S seed storage proteins of soybean. Field Crops Res 59(1):1–8

    Article  Google Scholar 

  • Sexton P, Paek N, Naeve S, Shibles R (2002) Sulfur metabolism and protein quality of soybean. J Crop Prod 5(1):285–308

    Article  CAS  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl L-methionine synthetase 3 gene. Plant J 29(3):371–380

    Article  CAS  PubMed  Google Scholar 

  • Shewry P, Napier J, Tatham A (1995) Seed storage proteins: structures and biosynthesis. The Plant Cell Online 7(7):945

    Article  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal H (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, Toojinda T (2002) Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res 9(3):79–88

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Weber C, Fehr W (1970) Registration of Provar soybeans. Crop Sci 10:728

    Article  Google Scholar 

  • Wilcox J, Shibles R (2001) Interrelationships among seed quality attributes in soybean. Crop Sci 41(1):11

    Article  CAS  Google Scholar 

  • Wilson R (2004) Seed composition. Soybeans Improv Prod Uses 3:621–677

    Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch S (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet MGG 253(5):535–545

    Article  CAS  Google Scholar 

  • Yaklich R (2001) [beta]-Conglycinin and glycinin in high-protein soybean seeds. J Agric Food Chem 49(2):729–735

    Article  CAS  PubMed  Google Scholar 

  • Yaklich R, Helm R, Cockrell G, Herman E (1999) Analysis of the distribution of the major soybean seed allergens in a core collection of Glycine max accessions. Crop Sci 39(5):1444

    Article  CAS  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74(03):279–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funds allocated to the Georgia Agricultural Experiment Stations and grants from the United Soybean Board.

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical standards

All experiments described in this manuscript comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdel-Haleem.

Additional information

Communicated by A. Charcosset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warrington, C.V., Abdel-Haleem, H., Hyten, D.L. et al. QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet 128, 839–850 (2015). https://doi.org/10.1007/s00122-015-2474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2474-4

Keywords

Navigation