Skip to main content
Log in

Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Like many widely cultivated crops, soybean [Glycine max (L.) Merr.] has a relatively narrow genetic base, while its perennial distant relatives in the subgenus Glycine Willd. are more genetically diverse and display desirable traits not present in cultivated soybean. To identify single-nucleotide polymorphisms (SNPs) between a pair of G. latifolia accessions that were resistant or susceptible to Sclerotinia sclerotiorum (Lib.) de Bary, reduced-representations of DNAs from each accession were sequenced. Approximately 30 % of the 36 million 100-nt reads produced from each of the two G. latifolia accessions aligned primarily to gene-rich euchromatic regions on the distal arms of G. max chromosomes. Because a genome sequence was not available for G. latifolia, the G. max genome sequence was used as a reference to identify 9,303 G. latifolia SNPs that aligned to unique positions in the G. max genome with at least 98 % identity and no insertions and deletions. To validate a subset of the SNPs, nine TaqMan and 384 GoldenGate allele-specific G. latifolia SNP assays were designed and analyzed in F2 G. latifolia populations derived from G. latifolia plant introductions (PI) 559298 and 559300. All nine TaqMan markers and 91 % of the 291 polymorphic GoldenGate markers segregated in a 1:2:1 ratio. Genetic linkage maps were assembled for G. latifolia, nine of which were uninterrupted and nearly collinear with the homoeologous G. max chromosomes. These results made use of a heterologous reference genome sequence to identify more than 9,000 informative high-quality SNPs for G. latifolia, a subset of which was used to generate the first genetic maps for any perennial Glycine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ITS:

Internal transcribed spacer

PCR:

Polymerase chain reaction

PI:

Plant introduction

QTL:

Quantitative trait loci

SNP:

Single-nucleotide polymorphism

References

  • Abawi GS, Provvidenti R, Crosier DC, Hunter JE (1978) Inheritance of resistance to white mold disease in Phaseolus coccineus. J Hered 69:200–202

    Google Scholar 

  • Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM (2001) Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci 41:180–188

    Article  CAS  Google Scholar 

  • Bauer S, Hymowitz T, Noel GR (2007) Soybean cyst nematode resistance derived from Glycine tomentella in amphiploid (G. max × G. tomentella) hybrid lines. Nematropica 37:277–285

    Google Scholar 

  • Bronski MJ, Straub SCK, Bogdanowicz SM, Doyle JL, Brown AHD, Doyle JJ (2009) Isolation and characterization of thirteen polymorphic microsatellite loci in the A-genome perennial group of the legume genus Glycine. Molec Ecol Res 9:1548–1550

    Google Scholar 

  • Burdon JJ (1988) Major gene resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean. Theor Appl Genet 75:923–928

    Google Scholar 

  • Burdon JJ, Marshall DR (1981) Evaluation of Australian native species of Glycine for resistance to soybean rust. Plant Dis 65:44–45

    Article  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    Article  PubMed  CAS  Google Scholar 

  • Cerboncini C, Beine G, Binsfeld PC, Dresen B, Peisker H, Zerwas A, Schnabl H (2002) Sources of resistance to Sclerotinia sclerotiorum (Lib) de Bary in a natural Helianthus gene pool. Helia 25:167–176

    Article  Google Scholar 

  • Chesnay C, Kumar A, Pearce SR (2007) Genetic diversity of SIRE-1 retroelements in annual and perennial Glycine species revealed using SSAP. Cell Mol Biol Lett 12:103–110

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Hyten DL, Matukumalli LK, Song QJ, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  PubMed  CAS  Google Scholar 

  • Chung G, Singh RJ (2008) Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci 27:295–341

    Article  CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung L, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Dinkins RD, Collins GB (2008) Agrobacterium-mediated genetic transformation of soybean. In: Kirti PD (ed) Handbook of New Technologies for Genetic Improvement of Legumes. CRC Press, Boca Raton, pp 89–102

    Google Scholar 

  • Du JC, Grant D, Tian ZX, Nelson RT, Zhu LC, Shoemaker RC, Ma JX (2010a) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113

    Article  PubMed  Google Scholar 

  • Du JC, Tian ZX, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma JX (2010b) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  PubMed  CAS  Google Scholar 

  • Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK, Singh H, Singh C, Barbetti MJ, Banga SS (2010) High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Res 117:51–58

    Article  Google Scholar 

  • Giesler LJ, Ziems AD (2006) Incidence of Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus in Nebraska soybean fields. Plant Health Prog. doi:10.1094/PHP-2006-0424-01-HM

    Google Scholar 

  • Gill N, Findley S, Walling JG, Hans C, Ma JX, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Grant JE (1990) Soybean: wide hybridisation through embryo culture. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry 10 Legumes and Oilseed Crops I. Springer-Verlag, Newyork, pp 134–148

  • Guo XM, Wang DC, Gordon SG, Helliwell E, Smith T, Berry SA, Martin SKS, Dorrance AE (2008) Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 391589A and PI391589B. Crop Sci 48:1129–1139

    Article  Google Scholar 

  • Hammatt N, Lister A, Jones B, Cocking EC, Davey MR (1992) Shoot formation from somatic hybrid callus between soybean and a perennial wild relative. Plant Sci 85:215–222

    Article  CAS  Google Scholar 

  • Hart SE, Glenn S, Kenworthy WW (1991) Tolerance and the basis for selectivity to 2,4-D in perennial Glycine species. Weed Sci 39:535–539

    Google Scholar 

  • Hartman GL, Wang TC, Hymowitz T (1992) Sources of resistance to soybean rust in perennial Glycine species. Plant Dis 76:396–399

    Article  Google Scholar 

  • Hartman GL, Kull L, Huang YH (1998) Occurrence of Sclerotinia sclerotiorum in soybean fields in east-central Illinois and enumeration of inocula in soybean seed lots. Plant Dis 82:560–564

    Article  Google Scholar 

  • Hartman GL, Gardner ME, Hymowitz T, Naidoo GC (2000) Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Crop Sci 40:545–549

    Article  Google Scholar 

  • Hempel K, Peakall R (2003) Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome 46:382–393

    Article  PubMed  CAS  Google Scholar 

  • Horlock CM, Teakle DS, Jones RM (1997) Natural infection of the native pasture legume, Glycine latifolia, by alfalfa mosaic virus in Queensland. Australasian Plant Pathol 26:115–116

    Article  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Huynh TT, Bastien M, Iquira E, Turcotte P, Belzile F (2010) Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation. Crop Sci 50:969–979

    Article  Google Scholar 

  • Hyten DL, Cannon SB, Song QJ, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed  Google Scholar 

  • Hyten DL, Choi IY, Song QJ, Specht JE, Carter TE, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010b) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-Seq in plant species. Am J Bot 99:383–396

    Article  PubMed  CAS  Google Scholar 

  • Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai HS, Mammadov J, del Campo SM, Metcalf M, Nguyen A, O’Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol 148:1740–1759

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Ninomiya S (2006) AntMap: constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci 56:371–377

    Article  Google Scholar 

  • Jarosz AM, Burdon JJ (1990) Predominance of a single major gene for resistance to Phakopsora pachyrhizi in a population of Glycine argyrea. Heredity 64:347–353

    Article  Google Scholar 

  • Jones RM, Brown AHD, Coote JN (1996) Variation in growth and forage quality of Glycine latifolia (Benth.) (Newell and Hymowitz). Genetic Resources Communication No. 26. Division of Tropical Crops and Pastures, CSIRO, Australia

  • Kim HS, Hartman GL, Manandhar JB, Graef GL, Steadman JR, Diers BW (2000) Reaction of soybean cultivars to sclerotinia stem rot in field, greenhouse, and laboratory evaluations. Crop Sci 40:665–669

    Article  CAS  Google Scholar 

  • Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma J, Kim WY, Kim BC, Park S, Lee KA, Kim DH, Kim KH, Shin JH, Jang YE, Do Kim K, Liu WX, Chaisan T, Kang YJ, Lee YH, Kim KH, Moon JK, Schmutz J, Jackson SA, Bhak J, Lee SH (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107:22032–22037

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Ann Rev Plant Biol 60:115–138

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9:357–359

    Article  CAS  Google Scholar 

  • Li CX, Li H, Siddique AB, Sivasithamparam K, Salisbury P, Banga SS, Banga S, Chattopadhyay C, Kumar A, Singh R, Singh D, Agnihotri A, Liu SY, Li YC, Tu J, Fu TF, Wang YF, Barbetti MJ (2007) The importance of the type and time of inoculation and assessment in the determination of resistance in Brassica napus and B. juncea to Sclerotinia sclerotiorum. Aust J Agric Res 58:1198–1203

    Article  Google Scholar 

  • Li DM, Sun MM, Han YP, Teng WL, Li WB (2010) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172:49–57

    Article  Google Scholar 

  • Lim SM, Hymowitz T (1987) Reactions of perennial wild species of genus Glycine to Septoria glycines. Plant Dis 71:891–893

    Article  Google Scholar 

  • Lin JY, Jacobus BH, SanMiguel P, Walling JG, Yuan Y, Shoemaker RC, Young ND, Jackson SA (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 25:317–321

    Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari S, Barbash DA (2011) The genetics of hybrid incompatibilities. Annu Rev Genet 45:331–355

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    Article  PubMed  CAS  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica 177:393–399

    Article  Google Scholar 

  • Minoche A, Dohm J, Himmelbauer H (2011) Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol 12:R112

    Article  PubMed  CAS  Google Scholar 

  • Mueller EE, Grau CR (2007) Seasonal progression, symptom development, and yield effects of Alfalfa mosaic virus epidemics on soybean in Wisconsin. Plant Dis 91:266–272

    Article  Google Scholar 

  • Newell CA, Delannay X, Edge ME (1987) Interspecific hybrids between the soybean and wild perennial relatives. J Hered 78:301–306

    Google Scholar 

  • Patzoldt ME, Tyagi RK, Hymowitz T, Miles MR, Hartman GL, Frederick RD (2007) Soybean rust resistance derived from Glycine tomentella in amphiploid hybrid lines. Crop Sci 47:158–161

    Article  Google Scholar 

  • Porter LD (2012) Pea germplasm with partial resistance to Sclerotinia sclerotiorum extends the time required by the pathogen to infect host tissue. Crop Sci 52:1044–1050

    Article  Google Scholar 

  • Porter LD, Hoheisel G, Coffman VA (2009) Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathol 58:52–60

    Article  Google Scholar 

  • Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Ratan A, Yu Z, Hayes VM, Schuster SC, Miller W (2010) Calling SNPs without a reference sequence. BMC Bioinfo 11:130

    Article  Google Scholar 

  • Ratnaparkhe MB, Singh RJ, Doyle JJ (2011) Glycine. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: legume crops and forages. Springer, New York, pp 83–116

    Chapter  Google Scholar 

  • Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  PubMed  CAS  Google Scholar 

  • Riggs RD, Wang S, Singh RJ, Hymowitz T (1998) Possible transfer of resistance to Heterodera glycines from Glycine tomentella to soybean. J Nematol 30:547–552

    PubMed  CAS  Google Scholar 

  • Roark LM, Hui Y, Donnelly L, Birchler JA, Newton KJ (2010) Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res 129:17–23

    Article  PubMed  CAS  Google Scholar 

  • Ronicke S, Hahn V, Horn R, Grone I, Brahm L, Schnabl H, Friedt W (2004) Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breeding 123:152–157

    Article  Google Scholar 

  • Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Molec Biol 59:309–322

    Article  CAS  Google Scholar 

  • Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O’Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8:330

    Article  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ, Burdon JJ, Brown AHD (1992) Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographic-distribution. Theor Appl Genet 83:827–832

    Google Scholar 

  • Schwartz HF, Otto K, Terán H, Lema M, Singh SP (2006) Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis 90:1167–1170

    Article  Google Scholar 

  • Seiler GJ (1992) Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res 30:195–230

    Article  Google Scholar 

  • Sheppard AE, Timmis JN (2009) Instability of plastid DNA in the nuclear genome. PLoS Genet 5:e1000323

    Article  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh RJ (2010) Methods for producing fertile crosses between wild and domestic soybean species. Patent No.: US 7,842,850

  • Singh RJ, Hymowitz T (1985) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor Appl Genet 71:221–230

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1988) Further data on the genomic relationships among wild perennial species (2n = 40) of the genus Glycine Willd. Genome 30:166–176

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Ahmad F, Hymowitz T (1992) Putative diploid ancestors of 80-chromosome Glycine tabacina. Genome 35:140–146

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998) Monosomic alien addition lines derived from Glycine max (L) Merr and G. tomentella Hayata: production, characterization, and breeding behavior. Crop Sci 38:1483–1489

    Article  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Vuong TD, Diers BW, Hartman GL (2008) Identification of QTL for resistance to Sclerotinia stem rot in soybean plant introduction 194639. Crop Sci 48:2209–2214

    Article  Google Scholar 

  • Wawrzynski A, Ashfield T, Chen NWG, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai HS, del Campo SM, Metcalf M, O’Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND, Innes RW (2008) Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol 148:1760–1771

    Article  PubMed  CAS  Google Scholar 

  • Wu XL, Ren CW, Joshi T, Vuong T, Xu D, Nguyen HT (2010) SNP discovery by high-throughput sequencing in soybean. BMC Genomics 11:469

    Article  PubMed  Google Scholar 

  • Zou JJ, Singh RJ, Hymowitz T (2004) SSR marker and ITS cleaved amplified polymorphic sequence analysis of soybean x Glycine tomentella intersubgeneric derived lines. Theor Appl Genet 109:769–774

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the National Sclerotinia Initiative and the United States Department of Agriculture-Agricultural Research Service. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the USDA or the University of Illinois and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie L. Domier.

Additional information

Communicated by J. Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (DOC 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S., Hartman, G.L., Singh, R.J. et al. Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence. Theor Appl Genet 126, 1627–1638 (2013). https://doi.org/10.1007/s00122-013-2079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2079-8

Keywords

Navigation