Skip to main content
Log in

Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393–400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2–28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boland G, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Article  Google Scholar 

  • Bradley C, Hamey H (2005) Canola disease situation in North Dakota, USA, 1993–2004. In: 14th Australian Research Assembly on Brassicas, Port Lincoln, Australia, pp 33–34

  • Chen HF, Wang H, Li ZY (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep 26:1791–1800

    Article  PubMed  CAS  Google Scholar 

  • del Río LE, Bradley CA, Henson RA, Endres GJ, Hanson BK, Mckay K, Halvorson M, Porter PM, Le Gare DG, Lamey HA (2007) Impact of Sclerotinia stem rot on yield of canola. Plant Dis 91:191–194

    Article  Google Scholar 

  • Falak I, Primomo V, Tulsieram L (2011) Mapping of QTLs associated with Sclerotinia stem rot resistance in Spring Canola Brassica napus. In: 13th International Rapeseed Congress, Prague, pp 772–774

  • Fourmann M, Chariot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44:1083–1099

    PubMed  CAS  Google Scholar 

  • Gao C, Tang Z, Yin J, An Z, Fu D, Li J (2011) Characterization and comparison of gene-based simple sequence repeats across Brassica species. Mol Genet Genomics 286:161–170

    Article  PubMed  CAS  Google Scholar 

  • Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK, Singh H, Singh C, Barbetti MJ, Banga SS (2010) High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crop Res 117:51–58

    Article  Google Scholar 

  • Hallauer A, Miranda J (1988) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Handley R, Ekbom B, Agren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Article  Google Scholar 

  • Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43

    Article  PubMed  CAS  Google Scholar 

  • Jamaux J, Gelie B, Lamarque C (1995) Early stages of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy. Plant Pathol 44:22–30

    Article  Google Scholar 

  • Koch S, Dunker S, Kleinhenz B, Rohrig M, von Tiedemann A (2007) Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97(9):1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Lefol C, Seguin-Swartz G, Morrall R (1997) Resistance to Sclerotinia sclerotiorum in a weed related to canola. Can J Plant Pathol 19:113

    Google Scholar 

  • Li Y, Chen J, Bennett R, Kiddle G, Wallsgrove R, Huang Y, He Y (1999) Breeding, inheritance, and biochemical studies on Brassica napus cv. Zhougyou 821: tolerance to Sclerotinia sclerotiorum (stem rot). In: Proceedings of the 10th International Rapeseed Congress. Canberra, Australia, p 61

    Google Scholar 

  • Li JZ, Sjakste TG, Roder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K (2011) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breeding 28:585–596

    Article  Google Scholar 

  • Luo P, Lang Z, Deng J, Wang Z (2000) Application of in vitro organ culture in wide-cross breeding of rapeseed. Euphytica 114:217–221

    Article  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177:393–400

    Article  Google Scholar 

  • Mei J, Wei D, Disi J, Ding Y, Liu Y, Qian W (2012) Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. Eur J Plant Pathol 134:599–604

    Article  Google Scholar 

  • Niu C, Lu Y, Yuan Y, Percy RG, Ulloa M, Zhang J (2011) Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA-AFLP analysis. Euphytica 181:65–76

    Article  Google Scholar 

  • Pope S, Varney P, Sweet J (1989) Susceptibility of cultivars of oilseed rape to Sclerotinia sclerotiorum and the effect of infection on yield. Asp Appl Biol 23:451–456

    Google Scholar 

  • Purdy L (1979) Sclerotinia sclerotiorum: history diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875–890

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1992) SAS technical report. SAS statistics software: changes and enhancements. Release 6.07

  • Seguin-Swartz G, Lefol C (1999) Sclerotinia stem rot resistance in crucifers. In: Proceedings of the 10th International Rapeseed Congress. Canberra, Australia, p 153

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic-linkage maps by means of a new Computer Package-Joinmap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu G, Zheng Y, Wang X, Yang Q (2004) Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Sci Agri Sin 37:23–28

    CAS  Google Scholar 

  • Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H (2011a) Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol 156:1508–1519

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten C, Zeng Z (2011b) Windows QTL Cartographer Version 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

  • Yang B, Sivastava S, Deyholos MK, Kav NNV (2007) Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Sci 173:156–171

    Article  CAS  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yin XR, Yi B, Chen W, Zhang WJ, Tu JX, Fernando WGD, Fu TD (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35

    Article  CAS  Google Scholar 

  • Zhang JF, Yuan YL, Niu C, Hinchliffe DJ, Lu YZ, Yu SX, Percy RG, Ulloa M, Cantrell RG (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187

    Article  CAS  Google Scholar 

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    PubMed  Google Scholar 

  • Zhao J, Peltier AJ, Meng J, Osborn TC, Grau CR (2004) Evaluation of Sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Dis 88:1033–1039

    Article  Google Scholar 

  • Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  PubMed  CAS  Google Scholar 

  • Zhao JW, Wang JL, An LL, Doerge RW, Chen ZJ, Grau CR, Meng JL, Osborn TC (2007) Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 227:13–24

    Article  PubMed  CAS  Google Scholar 

  • Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ (2010) Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance. Phytopathology 100:72–79

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Wolfgang Friedt and Prof. Jinguo Hu for kindly discussion and comments on the manuscript. This study was funded by grants from Special Fund for Agroscientific Research in the Public Interest (201103016), NSFC (31171585), CSTC (201180001), 863 (2010BAD01B02), 111 project (B12006), the open funds of Ministry of Agriculture Key Laboratory of Oil Crops Biology, and Southwest University Scientific and Technological Innovation Fund to Graduates (kb2009006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qian.

Additional information

Communicated by A. Bervillé.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, J., Ding, Y., Lu, K. et al. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea . Theor Appl Genet 126, 549–556 (2013). https://doi.org/10.1007/s00122-012-2000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2000-x

Keywords

Navigation