Skip to main content

Advertisement

Log in

Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is an important constituent of soybean meal. Since phytic acid and its mineral salts (phytates) are almost indigestible for monogastrics, their abundance in grain food/feed causes nutritional and environmental problems; interest in breeding low phytic acid has therefore increased considerably. Based on gene mapping and the characteristics of inositol polyphosphates profile in the seeds of a soybean mutant line Gm-lpa-ZC-2, the soybean ortholog of inositol 1,3,4,5,6 pentakisphosphate (InsP5) 2-kinase (IPK1), which transforms InsP5 into phytic acid, was first hypothesized as the candidate gene responsible for the low phytic acid alteration in Gm-lpa-ZC-2. One IPK1 ortholog (Glyma14g07880, GmIPK1) was then identified in the mapped region on chromosome 14. Sequencing revealed a G → A point mutation in the genomic DNA sequence and the exclusion of the entire fifth exon in the cDNA sequence of GmIPK1 in Gm-lpa-ZC-2 compared with its wild-type progenitor Zhechun No. 3. The excluded exon encodes 37 amino acids that spread across two conserved IPK1 motifs. Furthermore, complete co-segregation of low phytic acid phenotype with the G → A mutation was observed in the F2 population of ZC-lpa x Zhexiandou No. 4 (a wild-type cultivar). Put together, the G → A point mutation affected the pre-mRNA splicing and resulted in the exclusion of the fifth exon of GmIPK1 which is expected to disrupt the GmIPK1 functionality, leading to low phytic acid level in Gm-lpa-ZC-2. Gm-lpa-ZC-2, would be a good germplasm source in low phytic acid soybean breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelson PH (1999) A potential phosphate crisis. Science 283:2015

    Article  PubMed  CAS  Google Scholar 

  • Bilyeu K, Palavalli L, Sleper DA, Beuselinck P (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45(5):1830–1836

    Article  CAS  Google Scholar 

  • Bilyeu K, Palavalli L, Sleper DA, Beuselinck P (2006) Molecular genetic resources for development of 1 % linolenic acid soybeans. Crop Science 46(5):1913–1918

    Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 24(8):9

    Article  Google Scholar 

  • Frank T, Nörenberg S, Engel KH (2009a) Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. J Agric Food Chem 57:6408–6416

    Article  PubMed  CAS  Google Scholar 

  • Frank T, Habernegg R, Yuan FJ, Shu QY, Engel KH (2009b) Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean. J Food Compos Analysis 22:278–284

    Article  CAS  Google Scholar 

  • Gillman JD, Pantalone VR, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190

    Article  CAS  Google Scholar 

  • González B, Baños-Sanz JI, Villate M, Brearley CA, Sanz-Aparicio J (2010) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition. Proc Natl Acad Sci USA 107:9608–9613

    Article  PubMed  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660

    Article  PubMed  CAS  Google Scholar 

  • Josefsen L, Bohn L, Soerensen MB, Rasmussen SK (2007) Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene 397:114–125

    Article  PubMed  CAS  Google Scholar 

  • Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newslett 15:150–152

    Google Scholar 

  • Kim SI, Tai T (2010) Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels. Planta 232:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Andaya CB, Newman JW, Goyal SS, Tai T (2008a) Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet 117:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Andaya CB, Goyal SS, Tai T (2008b) The rice Lpa1 gene encodes a novel protein in phytic acid metabolism. Theor Appl Genet 117:769–779

    Article  PubMed  CAS  Google Scholar 

  • Kuwano M, Mimura T, Yoshida KT, Takaiwa F (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    Article  PubMed  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40(5):1397–1405

    Article  CAS  Google Scholar 

  • Lehmacher A, Vogt AB, Hensel R (1990) Biosynthesis of cyclic 2,3-diphosphoglycerate: isolation and characterization of 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase from Methanothermus fervidus. FEBS Lett 272:94–98

    Article  PubMed  CAS  Google Scholar 

  • Li ZL, Jakkula RS, Hussey JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103:1167–1173

    Article  CAS  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crops seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Maroof MAS, Natasha MG, Biyashev RM, Buss GR, Grabau EA (2009) Genetic basis of the low-phytate traits in the soybean line CX1834. Crop Sci 49:69–76

    Article  CAS  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring IK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein atmrp5/atabcc5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    Article  PubMed  CAS  Google Scholar 

  • Nakaik SH (1994) Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141:171–177

    Article  Google Scholar 

  • Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech EL, Aragão FJL (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    Article  PubMed  CAS  Google Scholar 

  • Panzeri D, Cassani E, Doria E, Tagliabue G, Forti L, Campion B, Bollini R, Brearley CA, Pilu R, Nielsen E, Sparvoli F (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2007) Forward genetic studies of seed phytic acid. Isr J Plant Sci 55:171–181

    Article  CAS  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomics era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Reinprecht Y, Luk-Labey SY, Larsen J, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128:253–258

    Article  CAS  Google Scholar 

  • Sharley A, Chapra S, Wedepohl R, Sims J, Daniel T, Reddy K (2008) Managing agricultural phosphorus for protection of surface waters—issues and options. J Environ Qual 23:437–451

    Article  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  PubMed  CAS  Google Scholar 

  • Shi JR, Wang HY, Schellin K, Li BL, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinase. Proc Natl Acad Sci USA 102:12612–12617

    Article  PubMed  CAS  Google Scholar 

  • Sun YJ, Thompson M, Lin GF, Butler H, Gao ZF, Thornburgh S, Yau K, Smith DA, Shukla VK (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol 144:1278–1291

    Article  PubMed  CAS  Google Scholar 

  • Sweetman D, Johnson S, Caddick SE, Hanke DE, Brearley CA (2006) Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1). Biochem J 394:95–103

    Article  PubMed  CAS  Google Scholar 

  • Wilcox JR, Premachandra PS, Young KA, Raboy V (2000) Isolation of high inorganic phosphorus, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Article  Google Scholar 

  • Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY (2009) Mutation of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83

    Article  PubMed  CAS  Google Scholar 

  • Yuan FJ, Zhao HJ, Ren XL, Zhu SL, Fu XJ, Shu QY (2007) Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet 115:945–957

    Article  PubMed  CAS  Google Scholar 

  • Yuan FJ, Zhu DH, Deng B, Fu XJ, Dong DK, Zhu SL, Li BQ, Shu QY (2009) Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr.). J Agric Food Chem 57:3632–3638

    Article  PubMed  CAS  Google Scholar 

  • Zhao HJ, Liu QL, Ren XL, Wu DX, Shu QY (2008) Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breed 22:603–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hairui Cui for his suggestions regarding the design of RT-PCR experiments; we are also grateful to Prof. Pengyin Chen for his comments and suggestions on the early versions of this manuscript. The research was financially supported by the China Natural Science Foundation through research contract No. 30871542 to FJY and in part supported by the Fundamental Research Funds for Central Universities, the Special Fund for Agro-scientific Research in the Public Interest (201103007) and by the Sino-Swiss Joint Research Project (2009 DFA32040) to QYS. Our heartfelt thanks go to the anonymous reviewers who offered their critical comments for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yao Shu.

Additional information

Communicated by D. Lightfoot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, FJ., Zhu, DH., Tan, YY. et al. Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Theor Appl Genet 125, 1413–1423 (2012). https://doi.org/10.1007/s00122-012-1922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1922-7

Keywords

Navigation