Skip to main content
Log in

Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brown midrib mutants in maize are known to be associated with reduced lignin content and increased cell wall digestibility, which leads to better forage quality and higher efficiency of cellulosic biomass conversion into ethanol. Four well known brown midrib (bm) mutants, named bm14, were identified several decades ago. Additional recessive brown midrib mutants have been identified by allelism tests and designated as bm5 and bm6. In this study, we determined that bm6 increases cell wall digestibility and decreases plant height. bm6 was confirmed onto the short arm of chromosome 2 by a small mapping set with 181 plants from a F2 segregating population, derived from crossing B73 and a bm6 mutant line. Subsequently, 960 brown midrib individuals were selected from the same but larger F2 population for genetic and physical mapping. With newly developed markers in the target region, the bm6 gene was assigned to a 180 kb interval flanked by markers SSR_308337 and SSR_488638. In this region, ten gene models are predicted in the maize B73 sequence. Analysis of these ten genes as well as genes in the syntenic rice region revealed that four of them are promising candidate genes for bm6. Our study will facilitate isolation of the underlying gene of bm6 and advance our understanding of brown midrib gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali F, Scott P, Bakht J, Chen Y, Lübberstedt T (2010) Identification of novel brown-midrib genes in maize by tests of allelism. Plant Breed 129:724–726

    Article  CAS  Google Scholar 

  • Andrieu J, Demarquilly C, Dardenne P, Lila M, Barrière Y, Maupetit P, Rivière F, Femenias N (1993) Composition and nutritive value of whole maize plant fed fresh to sheep. I. Factors of variation. Ann Zootech 42:221–249

    Article  Google Scholar 

  • Barrière Y, Argillier O (1993) Brown-midrib genes of maize—a review. Agronomie 13:865–876

    Article  Google Scholar 

  • Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52:193–228

    Article  Google Scholar 

  • Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004a) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126

    Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004b) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860

    Article  PubMed  Google Scholar 

  • Barrière Y, Alber D, Dolstra O, Lapierre C, Motto M, Ordas A, Van Waes J, Vlasminkel L, Welcker C, Monod JP (2005) Past and prospects of forage maize breeding in Europe. I. The grass cell wall as a basis of genetic variation and future improvements in feeding value. Maydica 50:259–274

    Google Scholar 

  • Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage quality and capacity of biofuel production. Maydica 54:161–198

    Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Brenner EA, Blanco M, Gardnber C, Lubberstedt T (2012) Genotypic and phenotypic characterization of isogenic doubled haploid exotic introgression lines in maize. Mol Breed. doi:10.1007/s11032-011-9684-5

  • Casler MD, Jung HG (2006) Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Anim Feed Sci Technol 125:151–161

    Article  CAS  Google Scholar 

  • Casler MD, Pedersen JF, Undersander DJ (2003) Forage yield and economic losses associated with the brown-midrib trait in sudangrass. Crop Sci 43:782–789

    Article  Google Scholar 

  • Chabbert B, Tollier MT, Monties B, Barrière Y, Argillier O (1994a) Biological variability in lignification of maize: expression of the brown midrib bm3 in three maize cultivars. J Sci Food Agric 64:349–355

    Article  CAS  Google Scholar 

  • Chabbert B, Tollier MT, Monties B, Barrière Y, Argillier O (1994b) Biological variability in biological variability in lignification of maize: expression of the brown midrib bm2 mutation. J Sci Food Agric 64:455–460

    Article  CAS  Google Scholar 

  • Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461

    Article  PubMed  CAS  Google Scholar 

  • Cox WJ, Cherney DJR (2001) Influence of brown midrib, leafy, and transgenic hybrids on corn forage production. Agron J 93:790–796

    Article  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Article  PubMed  CAS  Google Scholar 

  • Deng F, Aoki M, Yogo Y (2004) Effect of naringenin on the growth and lignin biosynthesis of gramineous plants. Weed Biol Manag 4:49–55

    Article  CAS  Google Scholar 

  • Energy Independence and Security Act of 2007, P.L. 110–140

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Fontaine AS, Bout S, Barrière Y, Vermerris W (2003) Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: analysis of neutral detergent fiber composition by pyrolysis–gas chromatography–mass spectrometry. J Agric Food Chem 51:8080–8087

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. C R Biol 327:455–465

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Mertens DR, Kim H, Funk C, Lu FC, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate crosslinking than by lignin composition. J Sci Food Agric 89:122–129

    Article  CAS  Google Scholar 

  • Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barrière Y (2007a) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226:235–250

    Article  PubMed  CAS  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D (2007b) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010) Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153:806–820

    Article  PubMed  CAS  Google Scholar 

  • Haney LJ, Hake S, Scott PM (2008) Allelism testing of Maize Coop Stock Center lines containing unknown brown midrib alleles. Maize Genet Coop Newslett 82:4–5

    Google Scholar 

  • He ZH, Fujiki M, Kohorn BD (1996) A cell wall-associated, receptor-like protein kinase. J Biol Chem 271:19789–19793

    Article  PubMed  CAS  Google Scholar 

  • Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. Theor Appl Genet 120:1621–1634

    Article  PubMed  Google Scholar 

  • Lally D, Ingmire P, Tong HY, He ZH (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331

    PubMed  CAS  Google Scholar 

  • Lauer J (1995) Corn germplasms for silage uses. Field Crops 28:4–5

    Google Scholar 

  • Lauer JG, Coors JG, Flannery PJ (2001) Forage yield and quality of corn cultivars developed in different eras. Crop Sci 41:1449–1455

    Article  Google Scholar 

  • Lee MH, Brewbaker LL (1984) Effects of brown midrib on yields and yield components of maize. Crop Sci 24:105–108

    Article  Google Scholar 

  • Lorenz AJ, Anex RP, Isci A, Coors JG, de Leon N, Weimer PJ (2009) Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol Biofuels 2:5

    Article  PubMed  Google Scholar 

  • Marita JM, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev 17:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Miller JE, Geadelmann JL, Marten GC (1983) Effect of the brown midrib-allele on maize silage quality and yield. Crop Sci 23:493–496

    Article  Google Scholar 

  • Moore KJ, Jung HG (2001) Lignin and fiber digestion. J Range Manag 54:420–430

    Article  Google Scholar 

  • Morrow SL, Mascia P, Self KA, Altschuler M (1997) Molecular characterization of a brown midrib3 deletion mutant in maize. Mol Breed 3:351–357

    Article  CAS  Google Scholar 

  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005a) Comparative effects of the sorghum bmr-6 and bmr-12 genes: I. Forage sorghum yield and quality. Crop Sci 45:2234–2239

    Google Scholar 

  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ, Jose HD (2005b) Comparative effects of the sorghum bmr-6 and bmr-12 genes: II. Grain yield, stover quality in grain sorghum. Crop Sci 45:2240–2245

    Google Scholar 

  • Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819

    Article  CAS  Google Scholar 

  • Provan GJ, Scobbie L, Chesson A (1997) Characterization of lignin from CAD and OMT deficient Bm mutants of maize. J Sci Food Agric 73:133–142

    Article  CAS  Google Scholar 

  • Ranjeva R, Boudet AM, Faggion R (1976) Phenolic metabolism in petunia tissues. IV. Properties of p-coumarate coenzyme A ligase isoenzymes. Biochimie 58:1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Rathin D, Maher MA, Jones C, Brinker RW (2011) Ethanol—the primary renewable liquid fuel. J Chem Technol Biotechnol 86:473–480

    Article  Google Scholar 

  • Riboulet C, Lefevre B, Denoue D, Barrière Y (2008) Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in set of 19 lines at silage harvest maturity. Maydica 53:11–19

    Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    Article  PubMed  CAS  Google Scholar 

  • Satter SE, Funnel-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein J, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Taboada A, Novo-Uzal E, Flores G, Loureda M, Ros Barceló A, Masa A, Pomar F (2010) Digestibility of silages in relation to their hydroxycinnamic acid content and lignin composition. J Sci Food Agric 90:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Vermerris W (2009) Cell wall biosynthetic genes of maize and their potential for bioenergy production. Handbook of maize genetics and genomics. Springer Science and Business Media, New york, pp 741–769

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153

    Article  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    PubMed  CAS  Google Scholar 

  • Voo KS, Whetten RW, O’Malley DM, Sederoff RR (1995) 4-Coumarate: coenzyme a ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning. Plant Physiol 108:85–97

    Article  PubMed  CAS  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    PubMed  CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang H, Yin Y, Xu Y, Chen F, Dixon RA (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci USA 107:14496–14501

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Elizabeth Bovenmyer, Janine Comstock, and Alice Wang for help in field. We appreciate the generosity of Dr. Sarah Hake (Adjunct Professor and Center Director; Plant Gene Expression Center USDA-ARS) and Dr. Erick Vollbrecht (professor in Department of Genetics, Development and Cell biology at Iowa State University) to provide position information of bm6 gene. Yongsheng Chen was supported by the Interdepartmental Genetics Graduate Program as well as RF Baker Center for Plant Breeding at Iowa State University. Hongjun Liu is a visiting student at ISU, supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lübberstedt.

Additional information

Communicated by M. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Liu, H., Ali, F. et al. Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2. Theor Appl Genet 125, 1223–1235 (2012). https://doi.org/10.1007/s00122-012-1908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1908-5

Keywords

Navigation