Skip to main content
Log in

Durable resistance to stripe rust is due to three specific resistance genes in French bread wheat cultivar Apache

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Quantitative resistance is postulated to be more durable than qualitative (R-gene mediated) resistance, which is usually quickly overcome by the pathogen population. Despite its wide use for nearly 10 years in France, the French bread wheat cultivar Apache remains resistant to stripe rust. Here, we investigated the genetic architecture of cv. Apache resistance to examine whether its durability could be explained by quantitative characteristics. We identified quantitative trait loci (QTL) by composite interval mapping of disease progress data recorded throughout 4 years of field assays. These assays included inoculation with three different pathotypes on a segregating population originating from a cross between cv. Apache and cv. Taldor, a French cultivar susceptible to stripe rust. Three QTLs derived from Apache, QYr.inra-2AS, QYr.inra-2BL and QYr.inra-4B, were detected. Each of these QTLs contributed between approximately 15 and 69 % of the phenotypic variance and corresponds to a race-specific resistance gene. We showed that QYr.inra-2AS and QYr.inra-2BS map to the positions of Yr17 and Yr7, respectively, whereas QYr.inra-4B corresponds to an adult plant resistance gene. Our results demonstrate that a combination of two or more race-specific resistance genes can confer durable resistance provided that it is properly managed at a continental level. Race-specific resistance genes should not be removed from breeding programs provided that they are properly managed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambrozkova M, Dedryver F, Dumalasova V, Hanzalova A, Bartos P (2002) Determination of the cluster of wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Prot Sci 38:21–45

    Google Scholar 

  • Badakhshan H, Mohammadi SA, Ahari Zad S, Moghaddam M, Jalal Kamali MR, Khodarahmi M (2008) Quantitative trait loci in bread wheat (Triticum aestivum L.) associated with resistance to stripe rust. Biotechnol Biotechnol Eq 22:901–906

    CAS  Google Scholar 

  • Bahri B, Kaltz O, Leconte M, de Vallavieille-Pope C, Enjalbert J (2009) Tracking costs of virulence in natural populations of the wheat pathogen, Puccinia striiformis f. sp. tritici. BMC Evol Biol 9:1–12

    Article  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, MacIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Bayles RA, Flath K, Hovmøller MS, de Vallavieille-Pope C (2000) Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe—a case study by the yellow sub-group of COST 817. Agronomie 7:805–811

    Article  Google Scholar 

  • Blaszczyk L, Goyeau H, Huang X-Q, Röder M, Stepien L, Chelowski J (2004) Identifying leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. Cell Mol Biol Lett 9:869–878

    PubMed  CAS  Google Scholar 

  • Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Cheng P, Chen XM (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204

    Article  PubMed  CAS  Google Scholar 

  • David JL, Dusautoir JC, Raynaud C, Roumet P (1999) Heritable variation in the ability to produce haploid embryos via pollination with maize and embryo rescue in durum wheat. Genome 42:338–342

    Article  Google Scholar 

  • de Vallavieille-Pope C, Picard-Formery H, Radulovic S, Johnson R (1990) Specific resistance factors to yellow rust in seedlings of some French wheat varieties and races of Puccinia striiformis Westend in France. Agronomie 10:103–113

    Article  Google Scholar 

  • de Vallavieille-Pope C, Rouzet J, Leconte M, Delos M, Mistou MN (2000) La rouille jaune du blé en France: des épidémies déclenchées par une nouvelle race, un hiver doux et un printemps humide. Phytoma 527:22–29

    Google Scholar 

  • de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M, Rouzet J (2012) Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Dis 96:131–140

    Article  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hovmøller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f. sp. tritici in European wheats. Plant Breed 126:225–236

    Article  Google Scholar 

  • Jagger LJ, Newell C, Berry ST, MacCormak R, Boyd LA (2011) The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor Appl Genet 122:723–733

    Article  PubMed  CAS  Google Scholar 

  • Johnson R (1981) Durable resistance: definition, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330

    Article  Google Scholar 

  • Johnson R (1992) Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63:3–22

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP ver. 3.0, 3rd edn. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, MA

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille S, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C,Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat—morphological and physiological traits. In: Proceedings of the 11th international wheat genetics symposium. Brisbane

  • McNeal FH, Koebner CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA ARS Bull 42:34–121

    Google Scholar 

  • Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet 117:391–399

    Article  PubMed  CAS  Google Scholar 

  • Robert O, Abelard C, Dedryver F (1999) Identification of molecular marker for the detection of the yellow rust resistance gene Yr17 in the wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rubiales D, Niks RE (2000) Combination of mechanisms of resistance to rust fungi as a strategy to increase durability. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges. CIHEAM-IAMZ, Zaragoza, pp 333–339

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Bœuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Wei Y, Ni C, Xie C, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat. Plant Breed 121:539–541

    Article  CAS  Google Scholar 

  • Wang S, Basten JC, Zeng ZB (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wolfe MS, Knott DR (1982) Populations of plant pathogens: some constraints on analysis of variation in pathogenicity. Plant Pathol 31:79–90

    Article  Google Scholar 

  • Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC (1961) Yellow rust on wheat: studies in epidemiology and physiologic specialisation. Tijdschr Plantenziekten 67:69–256

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang P, McIntosh RA, Hoxha S, Dong C (2009) Wheat stripe rust genes Yr5 and Yr7 are allelic. Theor Appl Genet 120:25–29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Integrated Project BIOEXPLOIT, FOOD-CT-2005-513959. The authors thank Dr Anne-Marie Chèvre for critical reading of the manuscript. We would also like to thank Frederic Brunet for organizing field trials and Leigh Gebbie for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paillard.

Additional information

Communicated by R. Waugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paillard, S., Trotoux-Verplancke, G., Perretant, MR. et al. Durable resistance to stripe rust is due to three specific resistance genes in French bread wheat cultivar Apache. Theor Appl Genet 125, 955–965 (2012). https://doi.org/10.1007/s00122-012-1885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1885-8

Keywords

Navigation