Skip to main content
Log in

Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fine-mapping studies on four QTLs, qDTY 2.1 , qDTY 2.2, qDTY 9.1 and qDTY 12.1 , for grain yield (GY) under drought were conducted using four different backcross-derived populations screened in 16 experiments from 2006 to 2010. Composite and Bayesian interval mapping analyses resolved the originally identified qDTY 2.1 region of 42.3 cM into a segment of 1.6 cM, the qDTY 2.2 region of 31.0 cM into a segment of 6.7 cM, the qDTY 9.1 region of 32.1 cM into two segments of 9.4 and 2.4 cM and the qDTY 12.1 region of 10.6 cM into two segments of 3.1 and 0.4 cM. Two of the four QTLs (qDTY 9.1 and qDTY 12.1 ) having effects under varying degrees of stress severity showed the presence of more than one region within the original QTL. The study found the presence of a donor allele at RM262 within qDTY 2.1 and RM24334 within qDTY 9.1 showing a negative effect on GY under drought, indicating the necessity of precise fine mapping of QTL regions before using them in marker-assisted selection (MAS). However, the presence of sub-QTLs together in close vicinity to each other provides a unique opportunity to breeders to introgress such regions together as a unit into high-yielding drought-susceptible varieties through MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asins MJ (2002) Review: present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. In: Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva. http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf. Accessed 30 April 2011

  • Berloo RV (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99(2):232–236

    Article  PubMed  Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Champoux C, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Ding X, Li X, Xiong L (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826

    Article  PubMed  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res 40:67–86

    Article  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Huke RE, Huke EH (1997) Rice area by type of culture: South, Southeast, and East Asia. IRRI, Los Baños, Philippines

    Google Scholar 

  • International Rice Research Institute (2009a) Rough rice production by country and geographical region (USDA). World rice statistics: trend in the rice economy. http://beta.irri.org/solutions/index.php?option=com_content&task=view&id=250. Accessed 30 April 2011

  • International Rice Research Institute (2009b) Harvested area of rough rice by country and geographical region (USDA). World rice statistics: trend in the rice economy. http://beta.irri.org/solutions/index.php?option=com_content&task=view&id=250. Accessed 30 April 2011

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita A, Wade LJ, Ali ML, Pathan MS, Zhang J, Sarkarung S, Nguyen HT (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23

    Article  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    Article  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res 103:42–52

    Article  Google Scholar 

  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res 107:221–231

    Article  Google Scholar 

  • Lafitte HR, Price AH, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109:1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  PubMed  CAS  Google Scholar 

  • MacMillan K, Emrich K, Piepho H-P, Mullins CE, Price AH (2006) Assessing the importance of genotype × environmental interaction for root traits in rice using a mapping population. II. Conventional QTL analysis. Theor Appl Genet 113:953–964

    Article  PubMed  CAS  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Chandra Babu R (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Article  CAS  Google Scholar 

  • Manosalva PM, Davidson RM, Bin L, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    Article  PubMed  CAS  Google Scholar 

  • Ouk M, Basnayake J, Tsubo M, Fukai S, Fischer KS, Cooper M, Nesbit H (2006) Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Res 99:48–58

    Article  Google Scholar 

  • Panaud O, Chen X, McCouch S (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    PubMed  CAS  Google Scholar 

  • Price AH, Steele KA, Townend J, Gorham J, Audebert A, Jones M, Courtois B (1999) Mapping root and shoot traits in rice: experience in UK, IRRI, and WARDA. In: Ito O, O’Toole J, Hardy B (eds) Genetic improvement of rice for water-limited environments. IRRI, Manila, pp 257–273

    Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought and salt-responsiveness in rice. Field Crops Res 76:199–219

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York, USA

    Google Scholar 

  • SAS Institute Inc. (2004) SAS online doc® 9.1.3. SAS Institute Inc., Cary, NC, USA

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Swamy BPM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:319

    Article  PubMed  Google Scholar 

  • Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-mime quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTLs. Genetics 172:2501–2514

    Article  PubMed  CAS  Google Scholar 

  • Uga Y, Okuno K, Yano M (2010a) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538

    Article  Google Scholar 

  • Uga Y, Okuno K, Yano M (2010b) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot. doi:10.1093/jxb/erq429

    Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293

    Article  Google Scholar 

  • Venuprasad R, Sta Cruz MT, Amante M, Magbanua R, Kumar A, Atlin GN (2008) Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations. Field Crops Res 107:232–244

    Article  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009a) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  PubMed  Google Scholar 

  • Venuprasad R, Bool ME, Dalid CO, Bernier J, Kumar A, Atlin GN (2009b) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269

    Article  CAS  Google Scholar 

  • Vikram P, Mallikarjuna Swamy BP, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. doi:10.1186/1471-2156-12-89

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa L. × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Rodriguez RM, Heuer S, Ismail AM, Serres JB, Ronald PC, Mackill D (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Generation Challenge Program and Bill & Melinda Gates Foundation for providing financial support for this study. The authors acknowledge the technical support received from Marilyn Del Valle, Lenie Quiatchon, Jocelyn Guevarra and Paul Maturan in the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Communicated by M. Wissuwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, S., Swamy, B.P.M., Vikram, P. et al. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theor Appl Genet 125, 155–169 (2012). https://doi.org/10.1007/s00122-012-1823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1823-9

Keywords

Navigation