Skip to main content
Log in

QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTLs) for frost and drought tolerance, and winter survival in the field, were mapped in meadow fescue (Festuca pratensis Huds.) and compared with corresponding traits in Triticeae and rice to study co-location with putatively orthologous QTLs and known abiotic stress tolerance genes. The genomes of grass species are highly macrosyntenic; however, the Festuca/Lolium and Triticeae homoeologous chromosomes 4 and 5 show major structural differences that is especially interesting in comparative genomics of frost tolerance. The locations of two frost tolerance/winter survival QTLs on Festuca chromosome 5F correspond most likely to the Fr-A1 and Fr-A2 loci on wheat homoeologous group 5A chromosomes. A QTL for long-term drought tolerance on chromosome 3F (syntenic with rice 1) support evidence from introgression of Festuca genome segments onto homoeologous Lolium chromosomes (3L) that this genome region is an excellent source of tolerance towards drought stress. The coincident location of several stress tolerance QTL in Festuca with QTL and genes in Triticeae species, notably dehydrins, CBF transcription factors and vernalisation response genes indicate the action of structural or regulatory genes conserved across evolutionarily distant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait loci

Ft:

Frost tolerance

Ws:

Winter survival

Dtm:

Moderate drought tolerance

Dts:

Severe drought tolerance

Gs:

Degree of green leaves after severe drought

Ts:

Percentage of live tillers after severe drought

IM:

Interval mapping

MQM:

Multiple QTL mapping

References

  • Agromomix Software Inc. (1998) AGROBASE™. User’s Guide and Command Reference. Winnipeg, Manitoba, Canada, pp 378

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  PubMed  CAS  Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2006) From crop to model to crop: Identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597

    Article  PubMed  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  • Börner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crosatti C, Soncini C, Stanca AM, Cattivelli L (1995) The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta 196:458–463

    Article  PubMed  CAS  Google Scholar 

  • Crosatti C, Nevo E, Stanca AM, Cattivelli L (1996) Genetic analysis of the accumulation of cor14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor Appl Genet 93:975–981

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ (2007) Responses of plant growth and functioning to changes in water supply in a changing climate. In: James IL, Morison MDM (ed) Plant growth and climate change, pp 96–117

  • Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. doi:10.1104/pp.110.159079

  • Durand JL, Bariac T, Ghesquiere M, Biron P, Richard P, Humphreys M, Zwierzykovski Z (2007) Ranking of the depth of water extraction by individual grass plants, using natural o-18 isotope abundance. Environ Exp Bot 60:137–144

    Article  CAS  Google Scholar 

  • Ergon A, Fang C, Jørgensen O, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112:232–242

    Article  PubMed  CAS  Google Scholar 

  • Fowler DB, Chauvin LP, Limin AE, Sarhan F (1996) The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor Appl Genet 93:554–559

    Article  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L (2009) Genetic variants of Hvcbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Galiba G, Simonsarkadi L, Kocsy G, Salgo A, Sutka J (1992) Possible chromosomal location of genes determining the osmoregulation of wheat. Theor Appl Genet 85:415–418

    Article  Google Scholar 

  • Galiba G, Kocsy G, Kaursawhney R, Sutka J, Galston AW (1993) Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat. Plant Sci 92:203–211

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Galiba G, Vágújfalvi A, Li CX, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Ghesquiere M, Humphreys MW, Zwierzykowski Z (2010) Festulolium. In: Boller B, Posselt UK, Vernonesi F (eds) Fodder crops and amenity grasses. Handbook of Plant Breeding vol 5. Springer Science + Business Media, New York

  • Giorni E, Crosatti C, Baldi P, Grossi M, Mare C, Stanca AM, Cattivelli L (1999) Cold-regulated gene expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions. Euphytica 106:149–157

    Article  Google Scholar 

  • Hackett CA (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585–599

    Article  PubMed  CAS  Google Scholar 

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome-7 associated with components of winterhardiness. Genome 36:66–71

    Article  PubMed  CAS  Google Scholar 

  • Hemamalini GS, Shashidhar HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78

    Article  CAS  Google Scholar 

  • Humphreys MW, Pasakinskiene I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534

    Article  Google Scholar 

  • Humphreys MW, Thomas H (1993) Improved drought resistance in introgression lines derived from Lolium multiflorum × Festuca arundinacea hybrids. Plant Breed 111:155–161

    Article  Google Scholar 

  • Humphreys M, Thomas HM, Harper J, Morgan G, James A, GhamariZare A, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol 137:55–60

    Article  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2006) A changing climate for grassland research. New Phytol 169:9–26

    Article  PubMed  CAS  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23

    Article  Google Scholar 

  • King J, Armstead IP, Donnison SI, Roberts LA, Harper JA, Skot K, Elborough K, King IP (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 177:597–606

    Article  PubMed  CAS  Google Scholar 

  • Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820

    Article  Google Scholar 

  • Knox AK, Dhillon T, Cheng HM, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Larsen A (1978) Freezing tolerance in grasses—methods for testing in controlled environments. Meld Norg LandbrHogsk 57(23):2–56

    Google Scholar 

  • Latorre EM (2010) Characterisation of novel Lolium multiflorum germplasm for abiotic stress tolerance. Aberystwyth University, Aberystwyth

    Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) Genetic study of day-length response in wheat. Heredity 41:185–191

    Article  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, OToole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    Article  CAS  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585

    Article  PubMed  CAS  Google Scholar 

  • Limin AE, Danyluk J, Chauvin LP, Fowler DB, Sarhan F (1997) Chromosome mapping of low-temperature induced wcs120 family genes and regulation of cold-tolerance expression in wheat. Mol Gen Genet 253:720–727

    Article  PubMed  CAS  Google Scholar 

  • Malatrasi M, Close TJ, Marmiroli N (2002) Identification and mapping of a putative stress response regulator gene in barley. Plant Mol Biol 50:143–152

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet Genomics 275:193–203

    Article  PubMed  CAS  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910

    Article  CAS  Google Scholar 

  • Pulli S, Hjortsholm K, Larsen A, Gudleifsson B, Larsson S, Kristiansson B, Hömmö L, Tronsmo AM, Ruuth P, Kristensson C (1996) Development and evaluation of laboratory testing methods for winterhardiness breeding. Publications vol 32. Nordic Gene Bank, Alnarp

    Google Scholar 

  • Quarrie SA, Laurie DA, Zhu JH, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35:155–165

    Article  PubMed  CAS  Google Scholar 

  • Rognli OA, Saha MC, Bhamidimarri S, van der Hejden S (2010) Fescues. In: Boller B et al. (eds.), Fodder crops and amenity grasses, handbook of plant breeding 5, Springer Science + Business Media, New York, pp 261–292, doi: 10.1007/978-1-4419-0760-8_11

  • Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85

    Article  PubMed  CAS  Google Scholar 

  • Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245

    Article  PubMed  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Google Scholar 

  • SAS (2002) SAS/SAS user’s guide: statistics. Version 9.1. SAS Institute Inc., Cary, NC

  • Scarth R, Law CN (1983) The location of the photoperiod gene, Ppd2 and an additional genetic-factor for ear-emergence time on chromosome 2B of wheat. Heredity 51:607–619

    Article  Google Scholar 

  • Scarth R, Law CN (1984) The control of the day-length response in wheat by the group 2 chromosomes. Plant Breed 92:140–150

    Google Scholar 

  • Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Skinner J, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping of frost toleranc loci in wheat an comparative mapping with other cereals. Acta Agron Hung 45:265–270

    Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44

    Article  Google Scholar 

  • Sutka J, Galiba G, Vágújfalvi A, Gill BS, Snape JW (1999) Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99:199–202

    Article  CAS  Google Scholar 

  • Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between poaceae species. Theor Appl Genet 114:273–283

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Thomas H, Evans C (1989) Effects of divergent selection for osmotic adjustment on water relations and growth of plants of Lolium perenne. Ann Bot 64:581–587

    Google Scholar 

  • Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8

    Article  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  PubMed  CAS  Google Scholar 

  • Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Thomas H, Humphreys MW, Humphreys MO (2008) Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol 179:765–775

    Article  PubMed  CAS  Google Scholar 

  • Ul Haq T, Gorham J, Akhtar J, Steele KA (2010) Dynamic QTL for stress components on chromosome 1 of rice. Func Plant Biol (in press)

  • Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the Cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol General Genet 263:194–200

    Article  Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269:60–67

    Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genom 274:506–514

    Article  Google Scholar 

  • van Ooijen JW, Maliepaard C (1996) MapQTL version 3.0: Software for the calculation of QTL position on genetic maps. CPRO-DLO, Wageningen

    Google Scholar 

  • van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2000) MapQTL™ version 4.0: user friendly power in QTL mapping. Addendum to the manual of version 3.0. Plant Research International, Wageningen

    Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Welsh JR, Keim DL, Pirasteh B, Ricarhds RD (1973) Genetic control of photoperiod response in wheat. In: Sears ER, Sears LMS (eds), Proceeding of the 4th International Wheat Genetics Symposium. University of Missouri, Columbia, USA, pp 879-884

  • Xiong YW, Fei SZ, Arora R, Brummer EC, Barker RE, Jung GW, Warnke SE (2007) Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population. Mol Breed 19:125–136

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: Comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zhang C, Fei S-z, Arora R, Hannapel D (2010) Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Hanne Henriksen, Øyvind Jørgensen and Torleiv Veum, The Norwegian University of Life Sciences, and Britta From, Graminor AS, for excellent technical assistance. We would like also to thank Dr. Harry Thomas, IBERS (formerly the Institute of Grassland and Environmental Research), for indispensable help with the drought experiment, and Simen R. Sandve for valuable comments on the manuscript. This investigation was supported by the EU-projects ‘European Gramineae Mapping Project’ (EGRAM—contract no. BI04-CT97-2220) and ‘Sustainable Grasslands Withstanding Environmental Stress’ (SAGES—contract no. QLK5-CT-2000-00764), and Grants no. 110733/112 and 110732/130 from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd Arne Rognli.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alm, V., Busso, C.S., Ergon, Å. et al. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123, 369–382 (2011). https://doi.org/10.1007/s00122-011-1590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1590-z

Keywords

Navigation