Skip to main content
Log in

Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50–1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50–1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F2 populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard RW, Shands RG (1954) Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopathology 44:266–274

    Google Scholar 

  • Avramova Z, Tikhonov A, SanMiguel P, Jin YK, Liu C, Woo SS, Wing RA, Bennetzen JL (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J 10:1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Avramova Z, Tikhonov A, Chen M, Bennetzen JL (1998) Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res 26:761–767

    Article  PubMed  CAS  Google Scholar 

  • Bassam BJ, Anollés GC, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Bennett F (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  PubMed  CAS  Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556

    Article  CAS  Google Scholar 

  • Brown-Guedira GL, Badaeva ED, Gill BS, Cox TS (1996) Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species. Theor Appl Genet 93:1291–1298

    Google Scholar 

  • Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789

    Article  PubMed  CAS  Google Scholar 

  • Cai SB, Cheng SH, Wu JZ, Yan W (2005) Evaluation, improvement and utilization of introducted wheat reserve resource resistant to powdery mildew. Acta Tritical Crops 25:116–120

    Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  PubMed  CAS  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo GR, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Peng JH, Lapitan NL, Pathan MS, Nguyen HT, Ma XF, Miftahudin, Gustafson JP, Greene RA, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sidhu D, Dilbirligi M, Gill KS, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Anderson JA (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  • Costamilan LM (2005) Variability of the wheat powdery mildew pathogen Blumeria graminis f. sp. tritici in the 2003 crop season. Fitopatologia Brasileira 30:420–422

    Article  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill KS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Everts KL, Leath S (1992) Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology 82:1273–1278

    Article  Google Scholar 

  • Feuillet C, Salse J (eds) (2009) Genetics and genomics of the Triticeae. Springer, New York

    Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Hassen M, Lemaire C, Fauvelot C, Bonhomme F (2002) Seventeen new exon-primed intron-crossing polymerase chain reaction amplifiable introns in fish. Mol Ecol Notes 2:334–340

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Ji JH, Cao AZ, Wang HY, Qin B, Wang SL, Kong F, Chen PD, Liu DJ, Wang XE (2007) Discrimination of the Triticum aestivum-T. timopheevii introgression lines using PCR-based molecular markers. Hereditas (Beijing) 29:1256–1262

    Article  CAS  Google Scholar 

  • Ji J, Qin B, Wang H, Cao A, Wang S, Chen P, Zhuang L, Du Y, Liu D, Wang X (2008) STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica 163:159–165

    Article  CAS  Google Scholar 

  • Jorgensen JH, Jensen CJ (1973) Gene Pm6 for resistance to powdery mildew. Euphytica 22:423

    Article  Google Scholar 

  • Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93–100

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Liang SS, Suenaga K, He ZH, Wang ZL, Liu HY, Wang DS, Singh RP, Sourdille P, Xia XC (2006) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology 96:784–789

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Griffey CA, Maroof MAS (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268–1275

    Article  CAS  Google Scholar 

  • Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2009) MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119:1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR, Baker CS (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435

    PubMed  CAS  Google Scholar 

  • Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116:417–425

    Article  PubMed  CAS  Google Scholar 

  • Peusha H, Enno T, Priilinn O (2000) Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 132:29–34

    Article  PubMed  CAS  Google Scholar 

  • Purnhauser L, Bóna L, Láng L (2010) Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary Euphytica Online First

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NL, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16, 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawet S, Misener S, Totowa NJ (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, USA, pp 365–386

    Google Scholar 

  • Salina EA, Leonova IN, Efremova TT, Roder MS (2006) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009a) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C (2009b) Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform 10:619–630

    Article  PubMed  CAS  Google Scholar 

  • Shi YQ, Wang BT, Qiang L, Wu XY, Fang W, Heng L, Tian YE, Liu QR (2009) Analysis on the virulent genes of Erysiphe graminis f.sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops 29:706–711

    CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Švec M, Miklovičová M (1998) Structure of populations of wheat powdery mildew (Erysiphe graminis DC f.sp. tritici Marchal) in Central Europe in 1993–1996: I. Dynamics of virulence. Eur J Plant Pathol 104:537–544

    Article  Google Scholar 

  • Tao WJ, Liu JY, Liu DJ, Chen PD (2000) Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100:564–568

    Article  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tikhonov A, SanMiguel P, Nakajima Y, Gorenstein N, Bennetzen J, Avramova Z (1999) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Proc Natl Acad Sci USA 96:7409–7414

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AP, Bennetzen JL, Avramova ZV (2000) Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell 12:249–264

    Article  PubMed  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci 48:253–261

    Article  CAS  Google Scholar 

  • Tsujimoto H (1995) Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. Genome 38:283–289

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Věchet L (2006) Reaction of winter wheat cultivars and breeding lines to Blumeria graminis f.sp. tritici. Plant Protect Sci 42:15–20

    Google Scholar 

  • Wei H, Fu Y, Arora R (2005) Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Pumphrey MO, Bai G (2009) Molecular mapping of stem rust resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253

    Article  Google Scholar 

  • You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinform 10:331

    Article  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Chinese High Tech Program of China (No. 2006AA10Z1F6), the Natural Science Foundation of Jiangsu Province (No. BK2006720), Important National Science & Technology Specific Projects of Transgenic Research (No. 2009ZX08002-001B) and the Programme of Introducing Talents of Discipline to Universities (No. B08025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-e Wang.

Additional information

Communicated by B. Friebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, B., Cao, A., Wang, H. et al. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123, 207–218 (2011). https://doi.org/10.1007/s00122-011-1577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1577-9

Keywords

Navigation