Skip to main content
Log in

High-resolution mapping of Rsn1, a locus controlling sensitivity of rice to a necrosis-inducing phytotoxin from Rhizoctonia solani AG1-IA

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aoki H, Sassa T, Tamura T (1963) Phytotoxic metabolites of Rhizoctonia solani. Nature 200:575

    Article  CAS  Google Scholar 

  • Brooks SA (2007) Sensitivity to a phytotoxin from Rhizoctonia solani correlates with sheath blight susceptibility in rice. Phytopathology 97:1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Schiavo FL (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Channamallikarjuna V, Sonah H, Prasad M, Rao GJN, Chand S, Upreti HC, Singh NK, Sharma TR (2010) Identification of major quantitative trait loci qSBR11–1 for sheath blight resistance in rice. Mol Breed 25:155–166

    Article  CAS  Google Scholar 

  • Che KP, Zhan QC, Xing QH, Wang ZP, Jin DM, He DJ, Wang B (2003) Tagging and mapping of rice sheath blight resistance gene. Theor Appl Genet 106:293–297

    PubMed  CAS  Google Scholar 

  • Danson J, Wasano K, Nose A (1999) Effect of culture nutrients on the production of Rhizoctonia solani toxins. IRRN 24:16

    Google Scholar 

  • Gahan PB, Wang L, Bowen ID, Winters C (2003) Cytokinin-induced apoptotic nuclear changes in cotyledons of Solanum aviculare and Lycopersicum esculentum. Plant Cell Tissue Org 72:237–245

    Article  CAS  Google Scholar 

  • Hagborg WAF (1970) A device for injecting solutions and suspensions into thin leaves of plants. Can J Bot 48:1135–1136

    Article  Google Scholar 

  • Han YP, Xing YZ, Chen ZX, Gu SL, Pan XB, Chen XL, Zhang QF (2002) Mapping QTL for horizontal resistance to sheath blight in an elite restorer line Minghui 63. Chin J Genet 29:622–626

    CAS  Google Scholar 

  • Hollander M, Wolfe D (1973) Nonparametric statistical methods. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  • Hou B, Lim E-K, Higgins G, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Bennetzen JL (1991) Recombination at the Rp1 locus of maize. Mol Gen Genet 226:377–382

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Hori Y, Sakai S, Honma Y (2002) Control of differentiation and apoptosis of human myeloid leukemia cells by cytokinins and cytokinin nucleosides, plant redifferentiation-inducing hormones. Cell Growth Differ 13:19–26

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kunihiro Y, Qian Q, Sato H, Teng S, Zeng DL, Fujimoto K, Zhu LH (2002) QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genet Sin 29:50–55

    PubMed  CAS  Google Scholar 

  • Lakshman DK, Liu C, Mishra PK, Tavantzis S (2006) Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Curr Genet 49:166–177

    Article  PubMed  CAS  Google Scholar 

  • Lehmann EL, D’Abrera HJM (1975) Nonparametrics: statistical methods based on ranks. Holden-Day series in probability and statistics. Holden-Day, San Francisco

    Google Scholar 

  • Li ZK, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995) Characterization of quantitative trait loci (QTL) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91:382–388

    CAS  Google Scholar 

  • Liu G, Jia Y, Correa-Victoria FJ, Prado GA, Yeater KM, McClung AM, Correll JC (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Mandava NB, Orellana RG, Warthen JD Jr, Worley JF, Dutky SR, Finegold H, Weathington BC (1980) Phytotoxins in Rhizoctonia solani: isolation and biological activity of m-hydroxy- and m-methoxyphenylacetic acids. J Agric Food Chem 28:71–75

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  PubMed  CAS  Google Scholar 

  • Pan XB, Rush MC, Sha XY, Xie QJ, Linscombe SD, Stetina SR, Oard JH (1999a) Major gene, nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing. Crop Sci 39:338–346

    Google Scholar 

  • Pan XB, Zou JH, Chen ZX, Lu JF, Zhu LH (1999b) Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. Chin Sci Bull 44:1783–1789

    Article  Google Scholar 

  • Pedras MS, Zaharia IL, Ward DE (2002) The destruxins: Synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596

    Article  PubMed  CAS  Google Scholar 

  • Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming QTL and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:503–510

    Article  CAS  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Prasad B, Eizenga GC (2008) Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis 92:1503–1509

    Article  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T (2004) Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed Sci 54:265–271

    Article  CAS  Google Scholar 

  • Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G (2010) Validation of a candidate deoxynivalenol-lnactivating UDP- glucosyltransferase from barley by heterologous expression in yeast. Mol Plant Microbe Interact 23:977–986

    Article  PubMed  CAS  Google Scholar 

  • Sexton AC, Minic Z, Cozijnsen AJ, Pedras MS, Howlett BJ (2009) Cloning, purification and characterisation of brassinin glucosyltransferase, a phytoalexin-detoxifying enzyme from the plant pathogen Sclerotinia sclerotiorum. Fungal Genet Biol 46:201–209

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam V, Sriram S, Babu S, Nandakumar R, Raguchander T, Balasubramanian P, Samiyappan R (2001) Purification and characterization of an extracellular α-glucosidase protein from Trichoderma viridae which degrades a phytotoxin associated with sheath blight disease in rice. J Appl Microbiol 90:320–329

    Article  PubMed  CAS  Google Scholar 

  • Sherwood RT (1965) Method of producing a phytotoxin. U.S. patent 3179653

  • Srinivasachary, Willocquet L, Savary S (2010) Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 1–22 (article in press)

  • Tai F-J, Wang X-L, Xu W-L, Li X-B (2008) Characterization and expression analysis of two cotton genes encoding putative UDP-Glycosyltransferases. Mol Biol 42:44–51

    Article  CAS  Google Scholar 

  • Tan CX, Ji XM, Yang Y, Pan XY, Zuo SM, Zhang YF, Zou JH, Chen ZX, Zhu LH, Pan XB (2005) Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Chin J Genet 32:399–405

    CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vidhyasekaran P, Ponmalar TR, Samiyappan R, Velazhahan R, Vimala R, Ramanathan A, Paranidharan V, Muthukrishnan S (1997) Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 87:1258–1263

    Article  PubMed  CAS  Google Scholar 

  • Webster RK, Gunnell PS (1992) Compendium of rice diseases. American Phytopathological Society, St. Paul

    Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Velten JP, Oliver MJ, Burke JJ (2003) High-throughput DNA extraction method suitable for PCR. BioTechniques 34:802–826

    Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The institute for genomic research osa1 rice genome annotation database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

  • Zou JH, Pan XB, Chen ZX, Xu JY, Lu JF, Zhai WX, Zhu LH (2000) Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet 101:569–573

    Article  CAS  Google Scholar 

  • Zuo S, Zhang L, Wang H, Yin Y, Zhang Y, Chen Z, Ma Y, Pan X (2008) Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genomics 35:499–505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the USDA Cooperative State Research, Education and Extension Service—National Research Initiative—Applied Plant Genomics Program entitled “RiceCAP: A coordinated research, education, and extension project for the application of genomic discoveries to improve rice in the United States” (USDA/CSREES grant 2004-35317-14867). Additional funding was also provided by USDA ARS through a post-doctoral research associate grant. The authors gratefully acknowledge Gordon Miller, Tara Moss and Melissa Jia for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Brooks.

Additional information

Communicated by Y. Xu.

Mention of a trademark of a proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costanzo, S., Jackson, A.K. & Brooks, S.A. High-resolution mapping of Rsn1, a locus controlling sensitivity of rice to a necrosis-inducing phytotoxin from Rhizoctonia solani AG1-IA. Theor Appl Genet 123, 33–41 (2011). https://doi.org/10.1007/s00122-011-1564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1564-1

Keywords

Navigation