Skip to main content
Log in

Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Allopolyploidy plays an important role in plant evolution and confers obvious advantages on crop growth and breeding compared to low ploidy levels. The present investigation was aimed at synthesising the first known chromosomally stable hexaploid Brassica with the genome constitution AABBCC. More than 2,000 putative hexaploid plants were obtained through large-scale hybridisation from various combinations of crosses between different cultivars of Brassica carinata (BBCC) and B. rapa (AA). The majority of plants after two generations of selfing within selected hexaploid plants (H2) were aneuploid, and only 80 plants (4.6%) had the expected hexaploid chromosome number (2n = 54). The hexaploid ratio increased to an average of 23.0 and 26.3% in the H3 and H4 generations, respectively, and was accompanied by an increase in pollen fertility. The appearance of aneuploid plants in each generation could be detected having various chromosomal abnormalities at meiosis. The frequency of hexaploid plants varied significantly among different cultivar combinations, from 0 to 56% in the H4 generation, and it showed a positive correlation with pollen fertility. The frequency of SSR allelic fragments lost or novel alleles gained was significantly lower in H4 than in H2 and H3, which reflects increasing genome stability in H4. The A and C genomes were significantly less stable than the B genome, which may mainly result from frequent homoeologous pairing and rearrangements between the A and C genomes. Methods to establish a stable hexaploid Brassica crop by intercrossing these lines followed by intensive selection are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammar K, Mergoum M, Rajaram S (2004) The history and evolution of triticale. In: Mergoum M, Macpherson HG (eds) Triticale improvement and production (FAO plant production and protection paper 179). Food and agriculture organization of the united nations, Rome, pp 1–9

  • Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (1996) Synthesis of hexaploid (AABBCC) somatic hybrids: a bridging material for transfer of ‘tour’ cytoplasmic male sterility to different Brassica species. Theor Appl Genet 92:762–768

    Article  Google Scholar 

  • Attia T, Röbbelen G (1986) Cytogenetic relationship within cultivated Brassica analyzed in amphidiploid from the three diploid ancestors. Can J Genet Cytol 28:323–329

    Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants-ancient and neo. Bio J Linn Soc 82:411–423

    Article  Google Scholar 

  • Burnham CR (1962) Discussions in cytogenetics. Burgess Publishing, Minneapolis

    Google Scholar 

  • Chèvre AM, Eber F, Barret P, Brace J (1997) Identification of the different Brassica nigra chromosomes from both sets of B. oleracea-B. nigra and B. napus-B. nigra addition lines with special emphasis on chromosome transmission and self-incompatibility. Theor Appl Genet 94:603–611

    Article  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Davis RH, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567

    Article  CAS  PubMed  Google Scholar 

  • Doyle GG (1986) Aneuploidy and inbreeding depression in random mating and self-fertilizing autotetraploid populations. Theor Appl Genet 72:799–806

    Article  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feldman M, Liu B, Sehgal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low copy DNA sequence in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed  Google Scholar 

  • Gerdemann KM, Sacristan MD, Braatz C, Schieder O (1994) Utilization of asymmetric somatic hybridization for the transfer of disease resistance from Brassica nigra to Brassica napus. Plant Breed 113:106–113

    Article  Google Scholar 

  • Howard HW (1942) The effect of polyploidy and hybridity on seed size in crosses between Brassica chinensis, B. carinata, amphidiploid B. chinensis-carinata, and autotetraploid B. chinensis. J Genet 43:105–119

    Article  Google Scholar 

  • Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation and coexistence of diploid and tetraploid Chamerion angustifolium. J Ecol 88:1–14

    Article  Google Scholar 

  • Iwasa S (1964) Cytogenetic studies on the artificially raised trigenomic hexaploid hybrid forms in the genus Brassica. J Fac Agr Kyushu Univ 13:309–318

    Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  Google Scholar 

  • Jiang Y, Tian E, Li R, Chen L, Meng J (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126:487–491

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  Google Scholar 

  • Larter EN, Gustafson JP (1980) Triticale. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy & Crop Science Society of America, Madison, pp 681–694

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Bio J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li M, Cai D, Huang L (2001) Studies of the meiosis of 2n gamete apomictic wheat grass (Elymus rectisetus). Acta Genet Sin 28:939–946

    CAS  PubMed  Google Scholar 

  • Li M, Qian W, Meng J, Li Z (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Li M, Chen X, Meng J (2006) Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from Brassica carinata. Crop Sci 46:234–242

    Article  CAS  Google Scholar 

  • Liu B, Vega JM, Feldman M (1998a) Rapid genomic changes in newly synthetized amphiploids of Triticum and Aegilops. II. changes in low-copy coding DNA sequences. Genome 41:535–542

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998b) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences. Genome 41:272–277

    Article  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Ployploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Adamczyk K, Maria MD, Eber F, Lucas MO, Delourme R, Chévre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Choi SR, Park BS, Lim YP, Meng J (2007) Flowering time QTL analysis of oilseed Brassica in multiple environments and genome-wide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  CAS  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  CAS  PubMed  Google Scholar 

  • Mahy G, Bruederle LP, Connors B, Hofwegen MV, Vorsa N (2000) Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry, Vaccinium oxycoccos (ericaceae). Am J Bot 87:1882–1889

    Article  CAS  PubMed  Google Scholar 

  • Maich R, Ordóñez A (2003) Improved meiotic index in hexaploid triticale (Triticosecale Wittmack). Cytologia 3:303–306

    Article  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants-evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Scheid OM, Matzke AJM (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. BioEssays 21:761–767

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Article  Google Scholar 

  • Merker A (1973a) Cytogenetic investigations in hexaploid Triticale I. Meiosis and fertility in F1 and F2. Hereditas 73:285–290

    Article  Google Scholar 

  • Merker A (1973b) Cytogenetics of hexaploid triticale. In Triticale: proceedings of an international symposium on cytogenetics of hexaploid triticale: 1–3 October, El Batan, Mexico, pp 167–172

  • Mizushima U (1950) On several artificial allopolyploids obtained in the tribe Brassiceae of Cruciferae. Tohoku J Agric Res 1:15–27

    Google Scholar 

  • Nakajima G (1954) Genetical and cytological studies in the breeding of amphidiploid types between Triticum and Secale vii. external characters, fertility and somatic chromosomes of T. Pyramidale × S. cereale F2 plants. Jpn J Genet 29:202–204

    Article  Google Scholar 

  • Olsson G (1963) Induced polyploids in Brassica. In: Åkerberg E et al (eds) Recent research in plant breeding. Svalöf, New York, pp 1944–1961, 179–192

    Google Scholar 

  • Osborn TC, Butruille DV, Sharpe AG, Pickering KJ, Parkin IAP (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    CAS  PubMed  Google Scholar 

  • Ozkan H (2000) Genomic changes in newly synthesized amphiploids of Aegilops and Triticum. PhD Thesis University of Cukurova

  • Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijiada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Bio J Linn Soc 82:675–688

    Article  Google Scholar 

  • Pradhan A, Plummer JA, Nelson MN, Cowling WA, Yan G (2010) Trigenomic hybrids from interspecific crosses between Brassica napus and B. nigra. Crop Pasture Sci (accepted)

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop brassicas, a review. Opera Bot 55:1–57

    Google Scholar 

  • Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187

    Article  CAS  Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt JR, Li J, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Sacristán MD, Gerdemann KM, Schieder O (1989) Incorporation of hygromycin resistance in Brassica nigra and its transfer to B. napus through asymmetric protoplast fusion. Theor Appl Genet 78:194–200

    Article  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (1999) SAS Online Doc®, version 8.0. Cary, NC

    Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    CAS  PubMed  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev 15:591–602

    Article  CAS  PubMed  Google Scholar 

  • Sjödin C, Glimelius K (1998) Brassica naponigra, a somatic hybrid resistant to Phoma lingam. Theor Appl Genet 77:651–656

    Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploidy genomes. Proc Nati Acad Sci USA 92:8089–8091

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nati Acad Sci USA 92:7719–7723

    Article  CAS  Google Scholar 

  • SPSS (1999) SPSS (statistical product and service solutions) 10.0 for windows, , Chicago, IL. http://www.spss.com/spss

  • Takeda T (1967) Studies on the fertility of artificially synthesized trigenomic hexaploids in Brassicinae: Brassica carinata Harron × B. campestris L. and (B. nigra Koch × B. oleracea L.) × B. campestris var. sarson. Ann Rep Fac Agric Edu Iwate Univ 27:41–52

    Google Scholar 

  • Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307

    Article  Google Scholar 

  • Truco MJ, Hu J, Sadowsky J, Quiros CF (1996) Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet 93:1225–1233

    Article  CAS  Google Scholar 

  • Tsuchiya T, Larter EN (1971) Further results on chromosome stability of hexaploid Triticale. Euphytica 20:591–596

    Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian L, Madlung A (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  CAS  PubMed  Google Scholar 

  • Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China Ser C 47:553–561

    Article  CAS  Google Scholar 

  • Zou J, Zhu JL, Huang SM, Tian ET, Xiao Y, Fu DH, Tu JX, Fu TD, Meng JL (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Guijun Yan for critical reading of the manuscript. We appreciate to the reviewers for their critical comments, and to one of anonymous reviewers who edited the English across the whole manuscript. The study was supported by the Key Project of the National Natural Science Foundation of China (project code: 30830073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Meng.

Additional information

Communicated by C. Quiros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, E., Jiang, Y., Chen, L. et al. Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theor Appl Genet 121, 1431–1440 (2010). https://doi.org/10.1007/s00122-010-1399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1399-1

Keywords

Navigation