Skip to main content
Log in

Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatulaUromyces striatus interaction

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Understanding the host response to Uromyces sp., the causal agent of rust in many crop species, is crucial in elucidating the specific biology of rust resistance. In an attempt to unravel the Medicago truncatulaU. striatus interaction, we performed a global analysis of transcription factor (TF) expression in resistant and susceptible accessions of the model plant M. truncatula during infection with U. striatus. For this purpose, an established qPCR platform was applied, consisting of specific primer pairs for more than 1,000 predicted TF genes. A total of 107 putative TF genes out of the 1,084 studied were differentially expressed. Thirteen of the TFs that were differentially expressed between resistant and susceptible genotypes are known to be relevant in cellular defense. These data suggest that resistance could be mediated both by genes that are constitutively expressed and by genes, which are activated/repressed when plants are inoculated. These defense related TFs sequences were amplified in chickpea DNA with the aim of determining the location of these genes on the genetic map of this crop and identifying possible DNA regions involved in resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  Google Scholar 

  • Ané JM, Zhu H, Frugoli J (2008). Recent advances in Medicago truncatula genomics. Int J Plant Genom. doi:10.1155/2008/256597

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicas genomes. Proc Natl Acad Sci USA 103:14959–14964

    Article  CAS  PubMed  Google Scholar 

  • Castillejo MA, Susín R, Madrid E, Fernández-Aparicio M, Jorrín JV, Rubiales D (2010) 2-DE based proteomic analysis of the Medicago truncatula–rust (Uromyces striatus) interaction. Ann Appl Biol. doi:10.1111/j.1744-7348.2010.00422.x

  • Cobos MJ, Rubio J, Strange RN, Moreno MT, Gill J, Millan T (2006) A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 149:105–111

    Article  Google Scholar 

  • Cook DR (1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Realtime RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY super family of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (1981) Resistance of plants to rust infection. Phytopathology 71:971–974

    Article  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180

    Article  CAS  PubMed  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Article  CAS  PubMed  Google Scholar 

  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, Torres-Jerez I, Xiao Y, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for highthroughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Meth 4:18

    Article  Google Scholar 

  • Kemen E, Hahn M, Mendgen K, Struck C (2005) Different resistance mechanisms of Medicago truncatula ecotypes against the rust fungus Uromyces striatus. Phytopathology 95:153–157

    Article  PubMed  Google Scholar 

  • Koepper JM (1942) Relative resistance of alfalfa species and varieties to rust caused by Uromyces striatus. Phytopathology 32:1048–1057

    Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  Google Scholar 

  • Mellersh DG, Heath MC (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol Plant Microbe Interact 16:398–404

    Article  CAS  PubMed  Google Scholar 

  • Neu C, Keller B, Feuillet C (2003) Cytological and molecular analysis of the Hordeum vulgarePuccinia triticina nonhost interaction. Mol Plant-Microbe Interact 16:626–633

    Article  CAS  PubMed  Google Scholar 

  • Niks RE, Rubiales D (2002) Detection of potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 124:201–216

    Article  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Rashid KY, Bernier CC (1991) The effect of rust on yield of faba bean cultivars and slow-rusting populations. Can J Plant Sci 71:967–972

    Google Scholar 

  • Rauscher M, Adam AL, Wirtz S, Guggenheim R, Mendgen K, Deising HB (1999) PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J 19:625–633

    Article  CAS  PubMed  Google Scholar 

  • Rispail N, Kaló P, Kiss GB, Ellis THN, Gallardo K, Thompson RD, Prats E, Larrainzar E, Ladrera R, González EM, Arrese-Igor C, Ferguson BJ, Gresshoff PM, Rubiales D (2009) Model legumes to contribute to Faba bean breeding. Field Crops Res. doi:10.1016/j.fcr.2009.03.014

  • Rubiales D, Moral A (2004) Prehaustorial resistance against alfalfa rust (Uromyces striatus) in Medicago truncatula. Eur J Plant Pathol 110:239–243

    Article  CAS  Google Scholar 

  • Rubiales D, Niks RE (1995) Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis 79:1208–1212

    Article  Google Scholar 

  • Rubiales D, Emeran AA, Sillero JC (2002) Rusts on legumes in Europe and North Africa. Grain Legumes 37:8–9

    Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming the host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  CAS  PubMed  Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Skinner DZ, Stuteville DL (1995) Host range expansion of the alfalfa rust pathogen. Plant Dis 79:456–460

    Article  Google Scholar 

  • Spanu PD (2006) Why do some fungi give up their freedom and become obligate dependants on their host? New Phytol 171:447–450

    Article  PubMed  Google Scholar 

  • Statler GD, McVey MA (1987) Partial resistance to Uromyces appendiculatus in dry edible beans. Phytopathology 77:1101–1103

    Article  Google Scholar 

  • Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2–3 plays a role in drought tolerance in petunia. Plant Journal 36(6):830–841

    Article  CAS  PubMed  Google Scholar 

  • Tekeoglu M, RajeshPN PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Klessig DF (1996) Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Nat Acad Sci USA 93:14972–14977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by FP6-2002-FOOD-1-506223 European Union Integrated Project and by Spanish projects AGL2005-07497-CO2-01/AGR and AGL2008-01239 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Madrid.

Additional information

Communicated by H. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madrid, E., Gil, J., Rubiales, D. et al. Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatulaUromyces striatus interaction. Theor Appl Genet 121, 1311–1321 (2010). https://doi.org/10.1007/s00122-010-1390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1390-x

Keywords

Navigation