Skip to main content
Log in

Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A sample-sequencing strategy combined with slot–blot hybridization and FISH was used to study the composition of the repetitive component of the sunflower genome. One thousand six hundred thirty-eight sequences for a total of 954,517 bp were analyzed. The fraction of sequences that can be classified as repetitive using computational and hybridization approaches amounts to 62% in total. Almost two thirds remain as yet uncharacterized in nature. Of those characterized, most belong to the gypsy superfamily of LTR-retrotransposons. Unlike in other species, where single families can account for large fractions of the genome, it appears that no transposon family has been amplified to very high levels in sunflower. All other known classes of transposable elements were also found. One family of unknown nature (contig 61) was the most repeated in the sunflower genome. The evolution of the repetitive component in the Helianthus genus and in other Asteraceae was studied by comparative analysis of the hybridization of total genomic DNAs from these species to the sunflower small-insert library and compared to gene-based phylogeny. Very little similarity is observed between Helianthus species and two related Asteraceae species outside of the genus. Most repetitive elements are similar in annual and perennial Helianthus species indicating that sequence amplification largely predates such divergence. Gypsy-like elements are more represented in the annuals than in the perennials, while copia-like elements are similarly represented, attesting a different amplification history of the two superfamilies of LTR-retrotransposons in the Helianthus genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brenner S, Elgar G, Sandford R, MacRae A et al (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  CAS  PubMed  Google Scholar 

  • Cafasso D, Cozzolino S, De Luca P, Chinali G (2003) An unusual satellite DNA from Zamia paucijuga (Cycadales) characterised by two different organisations of the repetitive unit in the plant genome. Gene 311:71–79

    Article  CAS  PubMed  Google Scholar 

  • Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106

    Article  CAS  PubMed  Google Scholar 

  • Cavallini A, Zolfino C, Cionini G, Cremonini R, Natali L et al (1986) Nuclear DNA changes within Helianthus annuus L.: cytophotometric, karyological and biochemical analyses. Theor Appl Genet 73:20–26

    Article  CAS  Google Scholar 

  • Ceccarelli M, Sarri V, Natali L, Giordani T, Cavallini A et al (2007) Characterization of the chromosome complement of Helianthus annuus by in situ hybridization of a tandemly repeated DNA sequence. Genome 50:429–434

    Article  CAS  PubMed  Google Scholar 

  • Charles M, Belcram H, Just J, Huneau C, Viollet A et al (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Martin J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J (2005) Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol 139:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1989) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elgar G, Clark MS, Meek S, Smith S et al (1999) Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 9:960–971

    Article  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schmidt T (2001) The large scale organization of the centromeric region in Beta species. Genome Res 11:253–265

    Article  CAS  PubMed  Google Scholar 

  • Giordani T, Natali L, Cavallini A (2003) Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus. Theor Appl Genet 107:316–325

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye R et al (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin AV et al (1997) The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    Article  CAS  PubMed  Google Scholar 

  • Hill P, Burford D, Martin DMA, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genom 273:371–381

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2533–2564

    Article  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  CAS  PubMed  Google Scholar 

  • Lentz DL, Pohl MD, Alvarado JL, Tarighat S, Bye R (2008) Sunflower (Helianthus annuus L.) as a pre-Columbian domesticate in Mexico. Proc Natl Acad Sci USA 105:6232–6237

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 34:12404–12410

    Article  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427–442

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T et al (1996) Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31:819–829

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison J et al (1996) The Ty1-copia group retrotransposons in Vicia species: Copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    CAS  PubMed  Google Scholar 

  • Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6:315–321

    Article  CAS  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localized to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    Article  CAS  PubMed  Google Scholar 

  • Rabinowicz D, Citek R, Budiman MA, Nunberg A, Bedell JA et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82:944–953

    Article  Google Scholar 

  • Rieseberg LH, Beckstrom-Sternberg SM, Liston A, Arias DM (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc. Numerical taxonomy and multivariate analysis system (version 2.02 j). Exeter Software, Setauket

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • SanMiguel P, Tikhonov A, Springer PS, Edwards KJ, Lee M et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Santini S, Cavallini A, Natali L, Minelli S et al (2002) Ty1/copia- and Ty3/gypsy-like DNA sequences in Helianthus species. Chromosoma 111:192–200

    Article  CAS  PubMed  Google Scholar 

  • Schilling EE (1997) Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction-site data. Theor Appl Genet 94:925–933

    Article  CAS  Google Scholar 

  • Schilling EE (2001) Phylogeny of Helianthus and related genera. Oleagineaux Corps Gras Lipides 8:22–25

    Google Scholar 

  • Schilling EE, Heiser CB (1981) Infrageneric classification of Helianthus (Compositae). Taxonomy 30:393–403

    Article  Google Scholar 

  • Schilling EE, Linder CR, Noyes RD, Rieseberg LH (1998) Phylogenetic relationships in Helianthus (Asteraceae) based on nuclear ribosomal DNA internal transcribed spacer region sequence data. Syst Bot 23:177–187

    Article  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Soltis ED, Soltis PS (2000) Contributions of plant molecular systematics to studies of molecular evolution. Plant Mol Biol 42:45–75

    Article  CAS  PubMed  Google Scholar 

  • Sossey-Alaoui K, Serieys H, Tersac M, Lambert P, Schilling EE et al (1998) Evidence for several genomes in Helianthus. Theor Appl Genet 97:422–430

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The French-Italian Public Consortium for grape genome characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  Google Scholar 

  • The International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • The International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Thompson JD, Desmond G, Gibson H, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Timme RE, Simpson BB, Linder CR (2007) High-resolution phylogeny for Helianthus (Asteraceae) using the 18 s–26 s ribosomal DNA external transcribed spacer. Am J Bot 94:1837–1852

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jónsson K, Suoniemi A, Schulman AH (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107:53–63

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol 61:275–291

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Nat Acad Sci USA 103:17638–17643

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wilson RK, Mardis ER (1997) Genome analysis: a laboratory manual. vol 1. Analyzing DNA. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Zhang D, Yang Q, Bao W, Zhang Y, Han B et al (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PRIN-MIUR, Projects “Caratterizzazione della componente ripetitiva di genomi complessi in specie vegetali: modelli per angiosperme e gimnosperme” and “Variabilità di sequenza ed eterosi in piante coltivate”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Morgante.

Additional information

Communicated by A. Bervillé.

Sequences from Helianthus annuus randomly sheared genomic DNA library and sequences of genes used for phylogenetic analyses are available at the URL: https://services.appliedgenomics.org/sequences-export/26-Helianthus/.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallini, A., Natali, L., Zuccolo, A. et al. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 120, 491–508 (2010). https://doi.org/10.1007/s00122-009-1170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1170-7

Keywords

Navigation