Skip to main content
Log in

Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez JM, Gonzalez-Torres R, Mallor C, Gomez-Guillamon ML (2005) Potential sources of resistance to fusarium wilt and powdery mildew in melons. HortScience 40:1657–1660

    Google Scholar 

  • Bardin M, Dogimont C, Nicot P, Pitrat M (1999) Genetic analysis of resistance of melon line PI 124112 to Sphaerotheca fuliginea and Erysiphe cichoracearum studied in recombinant inbred lines. Acta Hortic 492:163–168

    Google Scholar 

  • Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64

    Article  CAS  Google Scholar 

  • Bohn GW, Kishaba AN, Principe JA, Toba HH (1973) Tolerance to melon aphid in Cucumis melo L. J Am Soc Hort Sci 98:37–40

    Google Scholar 

  • Boiteux LS, Reifschneider FJB, Pessoa HBSV (1995) Phenotypic expression of quantitative and qualitative components of partial resistance to powdery mildew (Sphaerotheca fuliginea race 1) in melon (Cucumis melo) germplasm. Plant Breed 114:185–187

    Article  Google Scholar 

  • Brotman Y, Kovalski I, Dogimont C, Pitrat M, Portnoy V, Kaztir N, Perl-Treves R (2005) Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon. Theor Appl Genet 110:337–345

    Article  PubMed  CAS  Google Scholar 

  • Chiba N, Suwabe K, Nunome T, Hirai M (2003) Development of microsatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops. Breed Sci 53:21–27

    Article  CAS  Google Scholar 

  • Clayberg CD (1992) Interaction and linkage test of flesh colour genes in Cucumis melo L. Cucurbit Genet Coop Rep 15:53

    Google Scholar 

  • Cohen R (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Disease 77:513–517

    Google Scholar 

  • Cohen Y, Eyal H (1988) Epifluorescence microscopy of Sphaerotheca fuliginea race 2 on susceptible and resistant genotypes. Phytopathology 78:144–148

    Article  Google Scholar 

  • Cohen Y, Burger Y, Shraiber S (2002) Physiological races of Sphaerotheca fuliginea: factors affecting their identification and the significance of this knowledge. Cucurbitaceae 2002:181–187

    Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, de Vicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, de Vicente CM, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72

    Article  CAS  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • Epinat C, Pitrat M, Bertrand M (1993) Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica 65:135–144

    Article  Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber. J Am Soc Hort Sci 127:545–557

    CAS  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca Postigo J, Esteras C, Pico B, Nuez Vinals F, Arus P, Garcia-Mas J, Monforte A (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet (in press)

  • Floris E, Alvarez JM (1995) Genetic analysis of resistance of three melon lines to Sphaerotheca fuliginea. Euphytica 81:181–186

    Article  Google Scholar 

  • Fukino N, Kunihisa M, Matsumoto S (2004) Characterization of recombinant inbred lines derived from crosses in melon (Cucumis melo L.), AR 5′ ‘Harukei No. 3’. Breed Sci 54:141–145

    Article  Google Scholar 

  • Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hort Sci Biotechnol 82:330–334

    CAS  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P et al (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Hosoya K, Narisawa K, Pitrat M, Ezura H (1999) Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breed 118:259–262

    Article  Google Scholar 

  • Hosoya K, Kuzuya M, Murakami T, Kato K, Narisawa K, Ezura H (2000) Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breed 119:286–288

    Article  Google Scholar 

  • Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Yanoria MJT, Tsunematsu H, Kato H, Imbe T, Fukuta Y (2007) Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). JARQ 41:31–37

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kunihisa M, Fukino N, Matsumoto S (2003) Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134:209–215

    Article  CAS  Google Scholar 

  • Kuzuya M, Tomita T, Ezura H (2000) Histological observation of powdery mildew resistance on melon lines. Japanese Breed Res 2(1):298

    Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lehmann EL (1975) Nonparametrics. McGraw-Hill, New York

    Google Scholar 

  • Matsumoto S, Kunihisa M, Fukino N (2005) Quick and easy DNA extraction from multiple samples of strawberry for classification of cultivars. Res Results Veg Tea Sci 2004:11–12 (in Japanese)

    Google Scholar 

  • McCreight JD (2003) Genes for resistance to powdery mildew races 1 and 2US in melon PI 313970. HortScience 38:591–594

    Google Scholar 

  • McCreight JD, Kishaba AN, Bohn GW (1984) AR Hale’s Best Jumbo, AR 5, and AR Topmark: melon aphid-resistant muskmelon breeding lines. HortScience 19:309–310

    Google Scholar 

  • McCreight JD, Coffey MD, Turini TA, Matheron ME (2005) Field evidence for a new race of powdery mildew on melon. HortScience 40:888

    Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Roig E, Monforte AJ, Arús P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arús P, Puigdomenech P, Aranda MA et al (2005) A physical map covering the nsv locus that confers resistance to melon necrotic spot virus in melon (Cucumis melo L.). Theor Appl Genet 111:914–922

    Article  PubMed  CAS  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. doi:10.1007/s00122-007-0694-y

  • Morishita M, Sugiyama K, Saito T, Sakata Y (2003) Powdery mildew resistance in cucumber. Jpn Agric Res Q 37(1):7–14

    Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C et al (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462

    Article  PubMed  CAS  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AI, Arroyo M, Gómez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Orihara N, Uekusa H, Kusano K, Abiko K, Morishita M (2001) Race differentiation of melon powdery mildew fungus (Sphaerotheca fuliginea) from Kanagawa Prefecture, and the relationship between races and resistance of commercial varieties. Ann Rep Kanto-Tosan Plant Prot Soc 48:45–48 (in Japanese)

    Google Scholar 

  • Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  Google Scholar 

  • Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565

    Article  PubMed  CAS  Google Scholar 

  • Périn C, Hagen L, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Pitrat M (1991) Linkage groups in Cucumis melo L. J Hered 82:406–411

    CAS  Google Scholar 

  • Pitrat M, Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70:958–961

    Article  Google Scholar 

  • Ritschel PS, Lins TC, Tristan L, Buso GSC, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9

    Article  PubMed  Google Scholar 

  • Rivera ME, Codina JC, Olea F, de Vicente AD, Pérez-García A (2002) Differential expression of β-1, 3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca. Physiol Mol Plant Pathol 61:257–265

    Article  CAS  Google Scholar 

  • Rudi K, Treimo J, Moen B, Rud I, Vegarud G (2002) Multicolor post-PCR labeling of DNA fragments with fluorescent ddNTPs. BioTechniques 33:502–506

    Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klinger J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  PubMed  CAS  Google Scholar 

  • Sitterly WR (1978) Powdery mildew of cucurbits. In: Spencer DM (ed) The powdery mildews. Academic Press, New York, pp 359–379

    Google Scholar 

  • Sowell G Jr, Corley WL (1974) Severity of race 2 of Sphaerotheca fuliginea (Schlecht.) Poll. on muskmelon introductions reported resistant to powdery mildew. HortScience 9:398–399

    Google Scholar 

  • Sugiyama M, Sakata Y (2004) Screening for inheritance of melon necrotic spot virus (MNSV) resistance by mechanical inoculation. J Jpn Soc Hort Sci. 73(6):558–567

    Article  CAS  Google Scholar 

  • van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798

    Article  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  CAS  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE, Hunger RM (2006) Molecular characterization of a powdery mildew resistance gene in wheat cultivar Suwon 92. Phytopathology 96:496–500

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Kohyama T (1986) Mechanisms, genetics and selection methods of aphid resistance in melons, Cucumis melo. Bull Veg Ornam Crops Res Sta Ser C (Kurume) 9:1–12

    Google Scholar 

  • Yoshida T, Iwanaga Y (1991) Resistance to cotton aphid (Aphis gossypii G.) in melon : its mechanism and selection methods. JARQ 24:280–286

    Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  Google Scholar 

  • Zheng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Google Scholar 

Download references

Acknowledgments

This work was supported by Green Technology Project (grant DM-1607) from the Ministry of Agriculture, Forestry and Fisheries of Japan and by KAKENHI 19580043 from the Ministry of Education, Culture, Sports, Science and Technology. We are grateful to Dr. M. Kuzuya, Plant Biotechnology Institute, Ibaraki Agricultural Center, for kindly providing powdery mildew. We also thank Drs. Y. Yoshioka and K. Yamashita for their support in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Fukino.

Additional information

Communicated by I. Paran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukino, N., Ohara, T., Monforte, A.J. et al. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118, 165–175 (2008). https://doi.org/10.1007/s00122-008-0885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0885-1

Keywords

Navigation