Skip to main content
Log in

Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is by breeding resistant cultivars. Specific resistance genes have been identified in B. napus and related species but in some B. napus cultivars resistance is polygenic [mediated by quantitative trait loci (QTL)], postulated to be race non-specific and durable. The genetic basis of quantitative resistance in the French winter oilseed rape ‘Darmor’, which was derived from ‘Jet Neuf’, was previously examined in two genetic backgrounds. Stable QTL involved in blackleg resistance across year and genetic backgrounds were identified. In this study, near isogenic lines (NILs) were produced in the susceptible background ‘Yudal’ for four of these QTL using marker-assisted selection. Various strategies were used to develop new molecular markers, which were mapped in these QTL regions. These were used to characterize the length and homozygosity of the ‘Darmor-bzh’ introgressed segment in the NILs. Individuals from each NIL were evaluated in blackleg disease field trials and assessed for their level of stem canker in comparison to the recurrent line ‘Yudal’. The effect of QTL LmA2 was clearly validated and to a lesser extent, QTL LmA9 also showed an effect on the disease level. This work provides valuable material that can be used to study the mode of action of genetic factors involved in L. maculans quantitative resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basten CJ, Weir BS, Zeng ZB (1997) QTL Cartographer: a reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In Proceedings 49th annual corn and sorghum research conference, pp 250–266. American Seed Trade Association, Washington

  • Bost B, de Vienne D, Hospital F, Moreau L, Dillman C (2001) Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics 157:1773–1787

    PubMed  CAS  Google Scholar 

  • Boyd LA (2006) Can the durability of resistance be predicted? J Sci Food Agric 86:2523–2526

    Article  CAS  Google Scholar 

  • Brunel D, Froger N, Pelletier G (1999) Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42:387–402

    Article  PubMed  CAS  Google Scholar 

  • Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006a) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006b) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  PubMed  CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis in Brasssica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  Google Scholar 

  • Fourmann M, Charlot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance genes analogs. Genome 44:1–16

    Article  Google Scholar 

  • Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D (2002) From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet 105:1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Phil Trans R Soc B 360:1503–1511

    Article  PubMed  CAS  Google Scholar 

  • Ioannidou D, Pinel A, Brugidou C, Albar L, Ahmadi N, Ghesquiere A, Nicole M, Fargette D (2003) Characterization of the effects of a major QTL of the partial resistance to rice yellow mottle virus using a near-isogenic line approach. Physiol Mol Plant Pathol 63:213–221

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004) Fine mapping of QTL of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic linkage maps with Mapmaker/Exp 3.0: a tutorial and reference manual. Whitehead Institute Technical Report 3rd edn

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Loudet O, Saliba-Colombani V, Camilleri C, Calange F, Gaudon V, Koprovova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulphate content in Arabidopsis thaliana is highly controlled by APR2. Nat Genet 39:896–900

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Matshushita K, Iida S, Sunohara Y (2006) Characterization of two QTLs controlling resistance to rice stripe virus detected in a japanese upland rice line, Kanto72. Breed Sci 56:359–364

    Article  Google Scholar 

  • Nduulu LM, Mesfin A, Muehlbauer GJ, Smith KP (2007) Analysis of the chromosome 2 (2H) region of barley associated with the correlated traits Fusarium head blight resistance and heading date. Theor Appl Genet 115:561–570

    Article  PubMed  CAS  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homeologous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205

    CAS  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for fusarium head blight resistance in Near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T (2001) Arabidopsis and Brassica comparative genomics: Sequence, structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330

    PubMed  CAS  Google Scholar 

  • Renard M, Tanguy X, Delourme R, Barret P, Brunel D (1999) Mutant gene of the GRAS family and plants with reduced develoment containing said mutant gene. Patent no. WO0109356

  • Richardson KL, Vales MI, Kling JG, Mundt CC, Hayes PM (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theor Appl Genet 113:485–495

    Article  PubMed  CAS  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathol 28:S288–S297

    CAS  Google Scholar 

  • Rocherieux J (2004) Analyse génétique structurale et fonctionnelle de la résistance à la Hernie chez Brassica oleracea. Thèse ENSAR, Rennes, 166 pp

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • SAS II (1989) SAS/STAT users guide, version 6.0, 4th edn. SAS institute Inc, Cary

    Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    Article  PubMed  CAS  Google Scholar 

  • Schranz E, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaeae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186

    Article  Google Scholar 

  • Thabuis A, Palloix A, Servin B, Daubèze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistasis effects. Mol Breed 14:9–20

    Article  CAS  Google Scholar 

  • Thompson SJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2007) Mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514

    Article  Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes PM, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8:187–195

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Article  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PROMOSOL and CETIOM. We acknowledge the team of the INRA Experimental Unit (Le Rheu) for performing the NIL evaluation trials. X Pinochet, and the CETIOM experimental unit of Grignon (CETIOM Grignon), JC Pruvot and V Gaullier (PIONEER Génétique Blois) and T Foubert (EURALIS Semences Blois) are gratefully acknowledged for the 2005–06 experimentation of the NILs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Delourme.

Additional information

Communicated by H. C. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delourme, R., Piel, N., Horvais, R. et al. Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.). Theor Appl Genet 117, 1055–1067 (2008). https://doi.org/10.1007/s00122-008-0844-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0844-x

Keywords

Navigation