Skip to main content
Log in

A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We have developed a new DH mapping population for oilseed rape, named TNDH, using genetically and phenotypically diverse parental lines. We used the population in the construction of a high stringency genetic linkage map, consisting of 277 loci, for use in quantitative genetic analysis. A proportion of the markers had been used previously in the construction of linkage maps for Brassica species, thus permitting the alignment of maps. The map includes 68 newly developed Sequence Tagged Site (STS) markers targeted to the homologues of defined genes of A. thaliana. The use of these markers permits the alignment of our linkage map with the A. thaliana genome sequence. An additional 74 loci (31 newly developed STS markers and 43 loci defined by SSR and RFLP markers that had previously been used in published linkage maps) were added to the map. These markers increased the resolution of alignment of the newly constructed linkage map with existing Brassica linkage maps and the A. thaliana genome sequence. We conducted field trials with the TNDH population at two sites, and over 2 years, and identified reproducible QTL for seed oil content and erucic acid content. The results provide new insights into the genetic control of seed oil and erucic acid content in oilseed rape, and demonstrate the utility of the linkage map and population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus. I. Seed oil content and fatty acid composition. Heredity 90:39–48

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160

    Article  CAS  Google Scholar 

  • Cheung WY, Friesen L, Rakow GFW, Seguin-Swartz G, Landry BS (1997) A RFLP-based linkage map of mustard (Brassica juncea L. Czern and Coss). Theor Appl Genet 94:841–851

    Article  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid systhesis and seed oil content. Theor Appl Genet 91:972–977

    Article  CAS  Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet 89:615–621

    Article  CAS  Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on doubled haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  Google Scholar 

  • Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358

    CAS  PubMed  Google Scholar 

  • Hu JG, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    CAS  Google Scholar 

  • James DWJ, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245

    Article  CAS  Google Scholar 

  • James DWJ, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis fatty acid elongation-1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C (1995) Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Kaushik N, Agnihotri A (2000) GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition. Biochem Soc Trans 28:581–583

    Article  PubMed  CAS  Google Scholar 

  • Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR (1995) Abundance and characterization of simple sequence repeats (SSR) loci isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211

    Article  CAS  Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, Edwards KJ (2002) Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes 2:7–11

    CAS  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Lühs W, Friedt W (1993) Nonfood uses of vegetable oils and fatty acids. In: Murphy DJ (ed) Designer oil crops: breeding, processing and biotechnology. VCH, Cambridge, pp 73–130

    Google Scholar 

  • Lydiate D, Sharpe A (2003) Aliging genetic maps of Brassica napus Using microsatellite markers. In: Plant & animal genomes XI conference, p 473

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Sharpe A, Bowman C, Tian Z, Qian X, Lydiate D (1996) Genetic diversity of Brassica napus accessions mainly from China detected with RFLP markers. Chin J Genet 23(3):221–232

    Google Scholar 

  • Mika V, Tillmann P, Koprna R, Nerusil P, Kucera V (2003) Fast prediction of quality parameters in whole seeds of oilseed rape (Brassica napus L.). Plant Soil Environ 49:141–145

    Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homoeologous to sequenced regions of the chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  CAS  Google Scholar 

  • Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  PubMed  CAS  Google Scholar 

  • Reyna–López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  Google Scholar 

  • Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutation in the fatty acid elongase 1 gene are associated with a loss of ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    CAS  PubMed  Google Scholar 

  • Szewc-McFadden AK, Kresovich S, Bliek SM, Mitchell SE, McFerson JR (1996) Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet 93:534–538

    CAS  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 5:739–744

    Article  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996 ) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286

    Article  CAS  Google Scholar 

  • Uzunova MI, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping of QTL with epistatic effects and QTL x environment interactions by mixed model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Zhu J, He C, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of pant height in rice (Oryza sativa L.). Genetics 150:1257–1265

    PubMed  CAS  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in Angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Becker Heiko C, Zhang D, Zhang Y, Ecke Wolfgang (2005) Oil content in a European–Chinese rapeseed population: QTL with additive and epistatic effects and their genotype–environment interactions. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The TNDH population is available from the corresponding author. Marker scoring data, and the latest version of the linkage map, are available via the Web site of the senior authors (http://www.jic.bbsrc.ac.uk/staff/ian-bancroft/research_page3.htm#linkage and http://croplab.hzau.edu.cn/brassica/). We thank the EU Framework 5 Programme for financial support through INCO-DEV grant ICA4-CT-10067 and the National Grand Fundamental Research Program of Education of China under Grant No. 104171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Meng.

Additional information

Communicated by M. Kearsey.

D. Qiu and C. Morgan authors contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, D., Morgan, C., Shi, J. et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114, 67–80 (2006). https://doi.org/10.1007/s00122-006-0411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0411-2

Keywords

Navigation