Skip to main content
Log in

Candidate genes for barley mutants involved in plant architecture: an in silico approach

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To individuate candidate genes (CGs) for a set of barley developmental mutants, a synteny approach comparing the genomes of barley and rice has been introduced. Based on map positions of mutants, sequenced RFLP markers linked to the target loci were selected. The markers were mapped in silico by BLAST searches against the rice genome sequence and chromosomal regions syntenous to barley target intervals were identified. Rice syntenous regions were defined for 15 barley chromosomal intervals hosting 23 mutant loci affecting plant height (brh1; brh2; sld4), shoot and inflorescence branching (als; brc1; cul-2, -3, -5, -15, -16; dub1; mnd6; vrs1), development of leaves (lig) and leaf-like organs (cal-b19, -C15, -d4; lks5; suKD-25; suKE-74; suKF-76; trd; trp). Annotation of 110 Mb of rice genomic sequence made it possible to screen for putative CGs which are listed together with the reasons supporting mutant–gene associations. For two loci, CGs were identified with a clear probability to represent the locus considered. These include FRIZZY PANICLE, a candidate for the brc1 barley mutant, and the rice ortholog of maize Liguleless1 (Lg1), a candidate for the barley lig locus on chromosome 2H. For this locus, the validity of the approach was supported by the PCR-amplification of a genomic fragment of the orthologous barley sequence. SNP mapping located this fragment on chromosome 2H in the region hosting the lig genetic locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Reporter 9:208–218

    Article  CAS  Google Scholar 

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Keller B, Feuillet CA (2003) Large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    PubMed  CAS  Google Scholar 

  • Castiglioni P, Pozzi C, Heun M, Terzi V, Muller Kj, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056

    PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271:377–386

    Article  PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M et al (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–62

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2002) PHYLIP (PhyLogeny Inference Package) version 36a3, distributed by the author, Department of Genome Sciences, University of Washington

  • Franckowiak JD, Lundqvist U (2002) Descriptions of barley genetic stocks for 2001. Barley Genetics Newsletter 32:49–137

    Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    Article  PubMed  CAS  Google Scholar 

  • Gottwald S, Stein N, Borner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–45

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? Bioessays 26:395–404

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ et al (2004) A chromosome bin map of 2148 Expressed Sequence Tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP (2000) MrBayes: Bayesian inference of phylogeny. Department of Biology, University of Rochester, NY, USA, distributed by the author

  • Kinoshita T (1998) Linkage mapping using mutant genes in rice. Rice Genet Newsl 15:13–74

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwich A, Blake TK, Kanazin V, et al. (1993) A molecular, isozyme and morphological map of barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Komatsuda T, Tanno K (2004) Comparative high resolution map of the six-rowed spike locus 1 (vrs1) in several populations of barley, Hordeum vulgare L. Hereditas 141:68–73

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretchmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395

    Article  CAS  Google Scholar 

  • Laurie DA, Devos KM (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740

    Article  PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2002) The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the Triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125

    Article  PubMed  CAS  Google Scholar 

  • Manly K, Cudmore R, Meer J (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends Plant Sci 5:61–66

    Article  PubMed  CAS  Google Scholar 

  • Miftahudin, Ross K, Ma XF, Mahmoud AA, Layton J et al (2004) Analysis of Expressed Sequence Tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto N, Goto Y, Matsui M, Ukai Y, Morita M, Nemoto K (2004) Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet 109:700–706

    Article  PubMed  CAS  Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize organogenesis. Genes Dev 11:616–628

    Article  PubMed  CAS  Google Scholar 

  • Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink R, Capone R, Muller KJ, Bossinger G, Rohde W, Salamini F (2000) Genetics of mutations affecting the development of a barley floral bract. Genetics 154:1335–1346

    PubMed  CAS  Google Scholar 

  • Pozzi C, Rossini L, Agosti F (2001) Patterns and symmetries in leaf development. Semin Cell Dev Biol 12:363–373

    Article  PubMed  CAS  Google Scholar 

  • Pozzi C, Di Pietro D, Halas G, Roig C, Salamini F (2003) Integration of a molecular linkage map of barley (Hordeum vulgare) with the postion of 35 developmental mutants. Heredity 90:390–396

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    CAS  PubMed  Google Scholar 

  • Ramakrishna W, Dubcovsky J, Park YJ, Busso C, Emberton J, SanMiguel P, Bennetzen JL (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400

    PubMed  CAS  Google Scholar 

  • Roig C, Pozzi C, Santi L, Müller J, Wang Y, Stile M R, Rossini L, Stanca M, Salamini F (2004) Genetics of barley Hooded suppression. Genetics 167:439–448

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Sutton T, Whitford R, Baumann U, Dong C, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  PubMed  CAS  Google Scholar 

  • Tsiantis M, Hay A (2003) Comparative plant development: the time of the leaf? Nat Rev Genet 4:169–180

    Article  PubMed  CAS  Google Scholar 

  • Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    Article  PubMed  CAS  Google Scholar 

  • Wagner D (2003) Chromatin regulation of plant development. Curr Opin Plant Biol 6: 20–28

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, He JX (2004) Brassinosteroid signal transduction-choices of signals and receptors. Trends Plant Sci 9:91–96

    Article  PubMed  CAS  Google Scholar 

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, McCouch SR (2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165:2235–2247

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to David Horner for help with phylogenetic analysis and automation of in silico synteny analyses. This research was supported by a grant to F.S. from the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), FIRB project FUNCTIONMAP (RBAU01MHMR_002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pozzi.

Additional information

Communicated by J. W. Snape

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossini, L., Vecchietti, A., Nicoloso, L. et al. Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112, 1073–1085 (2006). https://doi.org/10.1007/s00122-006-0209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0209-2

Keywords

Navigation