Skip to main content
Log in

QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In order to identify quantitative trait loci (QTLs) for leaf senescence and related traits in rice (Oryza sativa L.), we developed two backcross populations, indica/japonica// japonica and indica/japonica//indica, using IR36 as the indica parent and Nekken-2 as the japonica parent. The QTLs were mapped using a set of simple sequence-repeat markers (SSRs) in the BC1F1 population. Senescence was characterized in these plants by measuring the leaf chlorophyll content 25 days after flowering (DAF), the reduction in chlorophyll content (the difference between the chlorophyll content at flowering and at 25 DAF), and the number of late-discoloring leaves per panicle at 25 DAF in five plants from each BC1F2 line. These plants were moved into a temperature-controlled growth cabinet at the time of flowering and allowed to mature under identical conditions. Eleven QTLs were detected in the two populations. The major of QTLs for senescence were found on the short arm of chromosome 6 and on the long arm of chromosome 9. Of these, one QTL on chromosome 6 and two on chromosome 9 were verified by confirming the effects of the genotypes on the phenotypes of the BC1F3 lines. The japonica parent was found to contribute to late senescence at all but one QTL. Based on a comparison of the effects of heterozygotes and homozygotes on the phenotypic values of each QTL genotype, we concluded that the differential senescence observed in the indica-japonica hybrid was not due to over-dominance; rather, it was the result of partial-dominance genes that were donated from either of the parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive sliver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  Google Scholar 

  • Cha KW, Lee YJ, Koh HJ, Lee BM, Nam YW, Paek NC (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104:526–532

    Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin SY, Monna L, Sasaki T, Ohsugi R (2001) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 102:793–800

    Article  CAS  Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698

    Google Scholar 

  • Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196:201–210

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  Google Scholar 

  • Nelson JC (1997) qgene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Peng S, Laza RC, Garcia FC, Cassman KG (1995) Chlorophyll meter estimates leaf area-based N concentration of rice. Commun Soil Sci Plant Anal 26:927–935

    Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartihour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    CAS  Google Scholar 

  • Ukai Y, Ohsawa R, Saito A (1991) mapl: a package of microcomputer programs for RFLP linkage mapping. Rice Genet Newsl 8:155–158

    Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara S, McCouch SR, Ishikawa K, Ogi Y, Maruyama K, Ikehashi H (1995) Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in indica/japonica hybrids of rice (O. sativa L.). Theor Appl Genet 90:182–188

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Manila

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Grant-in-Aid for Scientific Research (c) No. 15580008 from the Japanese Ministry of Education, Culture, Sport and Technology. We thank Narimasa Tanaka, Takashi Miyata and Satoshi Takeshita for their valuable help in preparing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ikehashi.

Additional information

Communicated by Q. Zhang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkhalik, A.F., Shishido, R., Nomura, K. et al. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet 110, 1226–1235 (2005). https://doi.org/10.1007/s00122-005-1955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-1955-2

Keywords

Navigation