Skip to main content

Advertisement

Log in

Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We assessed the utility of single-nucleotide polymorphisms (SNPs) and small insertion/deletion polymorphisms (InDels) as DNA markers in genetic analysis and breeding of rice. Toward this end, we surveyed SNPs and InDels in the chromosomal region containing the Piz and Piz-t rice blast resistance genes and developed PCR-based markers for typing the SNPs. Analysis of sequences from a blast-susceptible Japanese cultivar and two cultivars each containing one of these genes revealed that SNPs are abundant in the Piz and Piz-t regions (on average, one SNP every 248 bp), but the number of InDels was much lower. The dense distribution of SNPs facilitated the generation of SNP markers in the vicinity of the genes. For typing these SNPs, we used a modified allele-specific PCR method. Of the 49 candidate allele-specific markers, 33 unambiguously and reproducibly discriminated between the two alleles. We used the markers for mapping the Piz and Piz-t genes and evaluating the size of DNA segments introgressed from the Piz donor cultivar in Japanese near-isogenic lines containing Piz. Our findings suggest that, because of its ability to generate numerous markers within a target region and its simplicity in assaying genotypes, SNP genotyping with allele-specific PCR is a valuable tool for gene mapping, map-based cloning, and marker-assisted selection in crops, especially rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2 A
Fig. 3 A
Fig. 4 A
Fig. 5

Similar content being viewed by others

References

  • Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyren P, Uhlen M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  CAS  PubMed  Google Scholar 

  • Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10:1249–1258

    CAS  PubMed  Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Damacio RD, Oliva NP, Aswidnnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice Oryza sativa. Theor Appl Genet 84:345–354

    Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003a) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  CAS  PubMed  Google Scholar 

  • Batley J, Mogg R, Edwards D, O’Sullivan H, Edwards KJ (2003b) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol Breed 11:111–120

    Article  CAS  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    CAS  PubMed  Google Scholar 

  • Chen X, Livak KJ, Kwok PY (1998) A homogeneous, ligase-mediated DNA diagnostic test. Genome Res 8:549–556

    CAS  PubMed  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    CAS  PubMed  Google Scholar 

  • Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res 9:1087–1092

    PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hashimoto N, Higuchi K, Koiwa M, Yasuda K, Daigen M (1998) Selection of individuals having Piz, a rice blast true resistance gene, using RFLP markers in resistance sensitive cross progenies (in Japanese). Breed Sci 48 [Suppl 2]:109

  • Inukai T, Mackill DJ, Bonman JM, Sarkarung S, Zeigler R, Nelson R, Takamure I, Kinoshita T (1992) Blast resistance genes Pi2(t) and Pi-z may be allelic. Rice Genet Newsl 9:90–92

    Google Scholar 

  • Jiang J, Wang S (2002) Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi2(t) in rice. Mol Genet Genomics 268:249–252

    Article  CAS  PubMed  Google Scholar 

  • Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005

    CAS  PubMed  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang G-L (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Google Scholar 

  • Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    CAS  Google Scholar 

  • Mackill DJ, Bonman JM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749

    Google Scholar 

  • Mew TV, Parco AS, Hittalmani S, Inukai T, Nelson R, Zeigler RS, Huang N (1994) Fine-mapping of major genes for blast resistance in rice. Rice Genet Newsl 11:126–128

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tani M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    CAS  PubMed  Google Scholar 

  • Nagai K, Fujimaki H, Yokoo M (1970) Breeding of a rice variety Toride 1 with multi-racial resistance to leaf blast (in Japanese). Jpn J Breed 20:7–14

    Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza satva, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171

    CAS  PubMed  Google Scholar 

  • Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516

    PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Google Scholar 

  • Sasaki T, Abe S, Matsunaga K, Okamoto E, Tanno K (1994) Breeding of a multiline cultivar of paddy rice cultivar, Sasanishiki, for blast resistance (in japanese). Jpn J Breed 44 [Suppl. 2]:160

  • Tsaftaris AS, Polidoros AN (2000) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    CAS  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Watanabe S (1980) Breeding of blast-resistant rice cultivars using foreign cultivars as parents. In: Yamasaki Y, Takasaka J (eds) Rice blast disease and breeding of resistant cultivars (in Japanese). Hakuyuusya, Japan, pp 34–46

  • Yamaguchi T (1980) Fungal inoculation and disease evaluation. In: Yamasaki Y, Takasaka J (eds) Rice blast disease and breeding of resistant cultivars (in Japanese). Hakuyuusya, Japan, pp 140–174

  • Yokoo M, Kiyosawa S (1970) Inheritance of blast resistance of the rice variety, Toride 1, selected from the cross Norin 8×TKM.1. Jpn J Breed 20:129–132

    Google Scholar 

  • Yu ZH, Mackill DJ, Bonman JM, Tanksley SD (1991) Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet 81:471–476

    Google Scholar 

  • Yu J, Hu S, Wang J, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Nakajima, N. Yasuda, and M. Noguchi for their technical advice on assaying the blast resistance of the mapping population and H. Yoshida for his advice on typing with the allele-specific PCR procedure. We also thank Y. Uehara for providing us the seeds of Hokuriku IL4. This work was supported by a grant from the Japanese Ministry of Agriculture, Forestry and Fisheries under the project name Development of DNA Marker-Aided Selection Technology for Plants and Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ashikawa.

Additional information

Communicated by D.J. Mackill

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, K., Hashimoto, N., Daigen, M. et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108, 1212–1220 (2004). https://doi.org/10.1007/s00122-003-1553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1553-0

Keywords

Navigation