Skip to main content
Log in

Aktuelle Strategien zur Dosisreduktion in der Computertomographie

Current strategies for dosage reduction in computed tomography

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die unklaren Risiken der Strahlenbelastung durch die Computertomographie sind ein andauernder Anlass für Besorgnis, sowohl für medizinisches Personal als auch den Patienten. Gemäß dem Leitsatz „soviel wie nötig, aber so wenig wie möglich“ ist die Dosisreduktion zentrales Thema in klinischem Alltag, Forschung und Entwicklung. Das komplexe Zusammenspiel aus Untersuchungsplanung, -durchführung und -nachverarbeitung bietet auf der einen Seite ein großes Optimierungspotenzial, auf der anderen Seite jedoch auch ein beachtliches Fehlerrisiko. Der Radiologe trägt dabei die Verantwortung für die Qualität der Untersuchung. Dies erfordert einen hohen und aktualisierten Wissensstand. Die meisten der Verfahren zur Dosisreduktion stehen dabei herstellerübergreifend zur Verfügung. Leitgrundsatz ist stets die Dosisoptimierung ohne Verlust der diagnostischen Qualität.

Abstract

The potential risks of radiation exposure associated with computed tomography (CT) imaging are reason for ongoing concern for both medical staff and patients. Radiation dose reduction is, according to the as low as reasonably achievable principle, an important issue in clinical routine, research and development. The complex interaction of preparation, examination and post-processing provides a high potential for optimization on the one hand but on the other a high risk for errors. The radiologist is responsible for the quality of the CT examination which requires specialized and up-to-date knowledge. Most of the techniques for radiation dose reduction are independent of the system and manufacturer. The basic principle should be radiation dose optimization without loss of diagnostic image quality rather than just reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Bundesamt für Strahlenschutz: Jahresbericht 2009 – Röntgendiagnostik in Deutschland: Trends für die Jahre 1996 bis 2006. (2009) http://www.bfs.de

  2. Mettler FA Jr, Thomadsen BR, Bhargavan M et al (2008) Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 95:502–507

    Article  PubMed  CAS  Google Scholar 

  3. European Guidance on Estimating Population Doses from Medical X-Ray Procedures – Radiation Protection N° 154 154; Health Protection Agency; Centre for Radiation Chemical and Environmental Hazards; Radiation Protection Division; Chilton, Didcot, Oxfordshire OX11 0RQ (2008) http://www.ec.europa.eu/energy/nuclear/radiation_protection/doc/publication/154.zip

  4. BEIR VII Phase 2 – Health Risks from Exposure to Low Levels of Ionizing Radiation, Annex 12D: Additional Examples of Lifetime Risk Estimates Based on BEIR VII Preferred Models. The National Academies Press. Washington D.C. (2006) http://www.nap.edu/openbook.php?record_id=11340&page=311

  5. Preston RJ (2003) The LNT model is the best we can do – today. J Radiol Prot 23:263–268

    Article  PubMed  Google Scholar 

  6. Annals of the ICRP Volume 103 – ICRP103: The 2007 Recommendations of the International Commission on Radiological Protection. 103; Protection International Commission on Radiological (2007)

  7. Evaluation and routine testing in medical imaging departments – Part 2–6: constancy tests – imaging performance of computed tomography X-ray equipment. IEC 61223-2-6

  8. Shrimpton PC, Hillier MC, Lewis MA et al (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980

    Article  PubMed  CAS  Google Scholar 

  9. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  10. Cascade PN (2000) The American College of Radiology. ACR Appropriateness Criteria Project. Radiology 214(Suppl):3–46

    PubMed  Google Scholar 

  11. Lalitha P, Reddy M, Reddy KJ et al (2011) Computed tomography enteroclysis: a review. Jpn J Radiol 29:673–681

    Article  PubMed  Google Scholar 

  12. Li J, Udayasankar UK, Toth TL et al (2008) Application of automatic vertical positioning software to reduce radiation exposure in multidetector row computed tomography of the chest. Invest Radiol 43:447–452

    Article  PubMed  Google Scholar 

  13. Brink M, Lange F de, Oostveen LJ et al (2008) Arm raising at exposure-controlled multidetector trauma CT of thoracoabdominal region: higher image quality, lower radiation dose. Radiology 249:661–670

    Article  PubMed  Google Scholar 

  14. Stolzmann P, Frauenfelder T, Pfammatter T et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    Article  PubMed  Google Scholar 

  15. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  16. Ferda J, Novak M, Mirka H et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522

    Article  PubMed  Google Scholar 

  17. Loupatatzis C, Schindera S, Gralla J et al (2008) Whole-body computed tomography for multiple traumas using a triphasic injection protocol. Eur Radiol 18:1206–1214

    Article  PubMed  Google Scholar 

  18. Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop – protocol design, opacification, and image quality analysis. Radiology 255:508–516

    Article  PubMed  Google Scholar 

  19. Pierce DA (2002) Age-time patterns of radiogenic cancer risk: their nature and likely explanations. J Radiol Prot 22:A147–154

    Article  PubMed  Google Scholar 

  20. Pollard JM, Gatti RA (2009) Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 74:1323–1331

    Article  PubMed  CAS  Google Scholar 

  21. Danova D, Keil B, Kastner B et al (2010) Reduction of uterus dose in clinical thoracic computed tomography. Rofo 182:1091–1096

    Article  PubMed  CAS  Google Scholar 

  22. Catuzzo P, Aimonetto S, Fanelli G et al (2010) Dose reduction in multislice CT by means of bismuth shields: results of in vivo measurements and computed evaluation. Radiol Med 115:152–169

    Article  PubMed  CAS  Google Scholar 

  23. Dauer LT, Casciotta KA, Erdi YE et al (2007) Radiation dose reduction at a price: the effectiveness of a male gonadal shield during helical CT scans. BMC Med Imaging 7:5

    Article  PubMed  Google Scholar 

  24. Wang J, Duan X, Christner JA et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38:6084-6092

    Article  PubMed  Google Scholar 

  25. Chatterson LC, Leswick DA, Fladeland DA et al (2011) Lead versus bismuth-antimony shield for fetal dose reduction at different gestational ages at CT pulmonary angiography. Radiology 260:560–567

    Article  PubMed  Google Scholar 

  26. Kuefner MA, Brand M, Ehrlich J et al (2012) Effect of antioxidants on X-ray-induced gamma-H2AX foci in human blood lymphocytes: preliminary observations. Radiology 264(1):59–67

    Article  PubMed  Google Scholar 

  27. O’Daniel JC, Stevens DM, Cody DD (2005) Reducing radiation exposure from survey CT scans. AJR Am J Roentgenol 185:509–515

    Google Scholar 

  28. McCollough CH, Zink FE (1999) Performance evaluation of a multi-slice CT system. Med Phys 26:2223–2230

    Article  PubMed  CAS  Google Scholar 

  29. Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147

    Article  PubMed  Google Scholar 

  30. Mail N, Moseley DJ, Siewerdsen JH et al (2009) The influence of bowtie filtration on cone-beam CT image quality. Med Phys 36:22–32

    Article  PubMed  CAS  Google Scholar 

  31. Greess H, Wolf H, Baum U et al (1999) Dosage reduction in computed tomography by anatomy-oriented attenuation-based tube-current modulation: the first clinical results. Rofo 170:246–250

    PubMed  CAS  Google Scholar 

  32. Duan X, Wang J, Christner JA et al (2011) Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 197:689–695

    Article  PubMed  Google Scholar 

  33. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  34. LaBounty TM, Leipsic J, Poulter R et al (2011) Coronary CT angiography of patients with a normal body mass index using 80 kVp versus 100 kVp: a prospective, multicenter, multivendor randomized trial. AJR Am J Roentgenol 197:W860–867

    Article  PubMed  Google Scholar 

  35. Winklehner A, Goetti R, Baumueller S et al (2011) Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Invest Radiol 46:767–773

    Article  PubMed  CAS  Google Scholar 

  36. Eller A, May MS, Scharf M et al (2012) Attenuation-based automatic kilovolt selection in abdominal computed tomography: effects on radiation exposure and image quality. Invest Radiol [Epub ahead of print]

  37. May MS, Deak P, Kuettner A et al (2012) Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch. Eur Radiol 22:569–578

    Article  PubMed  Google Scholar 

  38. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  39. Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31:340–346

    Article  PubMed  Google Scholar 

  40. Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46:116–123

    Article  PubMed  Google Scholar 

  41. Kropil P, Lanzman RS, Walther C et al (2010) Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive post-processing filter. Rofo 182:248–253

    Article  PubMed  CAS  Google Scholar 

  42. May MS, Wust W, Brand M et al (2011) Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol 46:465–470

    Article  PubMed  Google Scholar 

  43. Kalender WA (2011) Computed tomography. 3rd edn. Wiley-VCH, London

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: W.A. Kalender ist Berater der Siemens Healthcare AG; B. Schmidt ist Angestellter der Siemens Healthcare AG; M.M. Lell bezieht Forschungszuschüsse und ist Teil der Redneragenturen der Firmen Bayer AG und Siemens AG Healthcare Sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.S. May M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, M., Wuest, W., Lell, M. et al. Aktuelle Strategien zur Dosisreduktion in der Computertomographie. Radiologe 52, 905–913 (2012). https://doi.org/10.1007/s00117-012-2338-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-012-2338-8

Schlüsselwörter

Keywords

Navigation