Skip to main content
Log in

Visualisierung von Strahlenfolgen am Zentralnervensystem

Visualization of radiation effects on the central nervous system

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Eine der wesentlichen Gründe für die Morbidität bei Tumorpatienten ist das häufige Auftreten von Nebenwirkungen am Zentralnervensystem (ZNS). Diese werden mit der Magnetresonanztomographie (MRT) sehr sensitiv erfasst und finden sich sowohl bei Therapien von ZNS-Tumoren als auch bei systemischen Therapieansätzen wie der Ganzkörperbestrahlung oder der Chemotherapie von Tumoren des Körperstamms. Durch die deutliche Verlängerung der Überlebenszeit von Tumorpatienten werden sie auch häufiger beobachtet.

Die Arbeit beschreibt die häufigsten akuten und chronischen Veränderungen am ZNS und deren bildmorphologische Korrelate. Akute Veränderungen sind oft reversibel, chronische Veränderungen können bis zu mehrere Jahre nach Abschluss der Therapie beobachtet werden. Therapiebedingte Veränderungen sind sehr schwer von tumorbedingten Veränderungen abgrenzbar, wobei moderne Bildgebungsverfahren wie die MR-Spektroskopie und die MR-Perfusion wichtige differenzialdiagnostische Beiträge liefern.

Abstract

Therapy-related side effects, which are detectable with magnetic resonance imaging (MRI) at high sensitivity, are one of the most frequent causes of morbidity in cancer patients. They can be observed in the treatment of central nervous system (CNS) diseases as well as in systemic therapy, including whole brain irradiation and chemotherapy and are more often seen due to the better overall survival. This review describes the most frequent acute and chronic therapy-related changes in the CNS and the imaging findings. Acute changes are often reversible while chronic changes can be observed up to several years after treatment.

The differentiation of treatment-related from tumor-related changes might be very difficult, although modern imaging modalities such as MR spectroscopy or MR perfusion measurements supply helpful differential diagnostic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Verdeccia A, Baili P, Quadiglia A et al (2008) Patient survival fo all cancer combined as indicator of cancer control in Europe. Eur J Public Health 18:527–532

    Article  Google Scholar 

  2. Herrlinger U, Steinbach JP (2010) Neurological complications of neurooncological therapy. Nervenarzt 81:940–949

    Article  PubMed  CAS  Google Scholar 

  3. Ricard D, Taillia H, Renard JL (2009) Brain damage from anticancer treatments in adult. Curr Opin Oncol 13:1285–1295

    Google Scholar 

  4. Filley CM (1999) Toxic leucencephalopathy. Clin Neuropharmacol 22:1411–1228

    Google Scholar 

  5. Brown MS, Stemmer SM, Simon JH et al (1998) White matter disease induced by high-dose chemotherapy: longitudinal study with MR imaging and proton spectroscopy. Am J Neuroradiol 19:217–221

    PubMed  CAS  Google Scholar 

  6. Perry A, Schmidt RE (2006) Cancer therapy associated CNS neuropathy: an update and review of the literature. Acta Neuropathol 111:197–212

    Article  PubMed  CAS  Google Scholar 

  7. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy induced necrosis of the brain after treatment. Radiology 217:377–384

    PubMed  CAS  Google Scholar 

  8. Hertzberg H, Huk WJ, Ueberall MA et al (1997) CNS late effects after ALL therapy in childhood. Med Pediatr Oncol 28:387–400

    Article  PubMed  CAS  Google Scholar 

  9. Moretti R, Torre P, Antonello RM et al (2005) Neuropschological evaluation of late-onset post radiotherapy encephalopathy: a comparison with vascular dementia. J Neurol Sci 30:195–200

    Article  Google Scholar 

  10. Tilly H, Lepage E, Coiffier B et al (2003) Intensive coneventiaon chemotherapy (ACVBP) compared with standard CHOP for poo prognosis agressive non-Hodgkin lymphoma. Blood 102:4284–4289

    Article  PubMed  CAS  Google Scholar 

  11. Winocur G, VardyJ, Binns MA et al (2006) The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 85:66–75

    Article  PubMed  CAS  Google Scholar 

  12. Gavrilovic IT, Hormigo A, Yahalom J et al (2006) Long-term follow-up of high-dose methotrexate-based therapywith and without whole brain iradiation for newly diagnosed primary CNS lymphoma. J Clin Oncol 24:4570–4574

    Article  PubMed  CAS  Google Scholar 

  13. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation intory tot he central nervous system: implications for neuroprotection. Mol Interv 4:273–284

    Article  PubMed  CAS  Google Scholar 

  14. Faithfull S, Brada M (1998) Somnolence syndrome in addults following cranial irradiation for primary brain tumors. Clin Cocol 10:250–254

    CAS  Google Scholar 

  15. Dietrich J (2010) Chemotherapy associated central nervous system damage. Adv Exp Med Biol 30:296–310

    Google Scholar 

  16. Reinhardt D, Thiele C, Creutzing U (2002) Neuropsychological sequelae in children with AML treated with or without phrophylactic CNS irradiation. Klein Padiatr 214:22–29

    Article  CAS  Google Scholar 

  17. Atkinson S, Li Y, Wong CS (2003) Changes in oligodendrocytes and myelin gene expression after irradiation in the rodent spinal cord. Int J Radiat Oncol Biol Phys 57:1093–1100

    Article  PubMed  CAS  Google Scholar 

  18. Morris B, Partap S, Yeom K et al (2009) Cerebrovascular disease in childhood cancer survivors: a children’s oncology group report. Neurology 73:1906–1913

    Article  PubMed  CAS  Google Scholar 

  19. Vaszquez E, Lucaya J, Castellote A et al (2002) Neuroimaging in pediatric leukemia and lymphoma: differential diagnosis. Radiographics 22:1411–1428

    Article  Google Scholar 

  20. Dietrich J, Marienhagen J, Schalke B et al (2004) Vascular neurotoxicity following chemotherapy with cisplatin, ifosfamide and etoposid. Ann Pharmacother 38:242–246

    PubMed  Google Scholar 

  21. Elliott MA, Wolf RC, Hook CC et al (2004) Thromboembolism in adults with acute lymphoblastic leukemia during induction with L-asparaginase-containing multi-agen regimens: incidence, risk factors, and possible role of antithrombin. Leuk Lymphoma 45:1545–1549

    Article  PubMed  Google Scholar 

  22. Bartynski WS (2008) Posterior reversibel encephalopathy syndrome, part 1: fundamental imaging and clinical features. Am J Neuroradiol 29:1036–1042

    Article  PubMed  CAS  Google Scholar 

  23. Glass JP, Hwang TL, Leavens ME et al (1984) Cerebral radiation necorosis following treatment of extracranial malignacies. Cancer 54:1966–1972

    Article  PubMed  CAS  Google Scholar 

  24. Oka M, Terae S, Kobayashi R et al (2003) MRI in methotrexate-related leucencepholopathy: disseminted necrotizizing leukencepholopathy in comparison with mild leukencephalopathy. Neuroradiology 45:493–497

    Article  PubMed  CAS  Google Scholar 

  25. Barajas RF, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility weighted contrast enhance perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  Google Scholar 

  26. Kerklaan JP, Lycklama A Nijeholt GJ, Wiggenraad RG et al (2011) SMART syndrome: a late reversible complication after radiation therapy for brain tumors. J Neurol 258:1098–1104

    Article  PubMed  Google Scholar 

  27. Essig M, Giesel F, Stieltjes B, Weber MA (2007) Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy). Radiologe 47:513–517

    Article  PubMed  CAS  Google Scholar 

  28. Keezer MR, Del Maestro R (2009) Radiation-induced cavernous hemangiomas: case report and literature review. Can J Neurol Sci 36:303–310

    PubMed  Google Scholar 

  29. Heckl S, Achoff A, Kunze S (2002) Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. Cancer 94:3285–3291

    Article  PubMed  Google Scholar 

  30. Franco DA, Greenberg HS (2001) 5-FU multifocal inflammatory leukencephalopathy and dihydropyrimidine dehydrogenase deficiency. Neurology 56:110–112

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Essig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essig, M., Dinkel, J. & Zamecnik, C. Visualisierung von Strahlenfolgen am Zentralnervensystem. Radiologe 52, 229–234 (2012). https://doi.org/10.1007/s00117-011-2197-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-011-2197-8

Schlüsselwörter

Keywords

Navigation