Skip to main content
Log in

Fetale Lungenentwicklung in der MRT

Normaler Verlauf und Beeinträchtigung durch vorzeitigen Blasensprung

Fetal lung development on MRI

Normal course and impairment due to premature rupture of membranes

  • Fetale MRT
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die fetale Lungenentwicklung wird einerseits durch eine Vielzahl molekularer Faktoren und andererseits durch mechanisch-physiologische Kräfte beeinflusst. Ein geordnetes Zusammenspiel dieser Mechanismen führt zu einem ausreichend großen und strukturell reifen Organ, das sofort nach der Geburt das Überleben des Neugeborenen sicherstellt. Neben der pränatalen Ultraschalluntersuchung bietet nun auch die Magnetresonanztomographie (MRT) die Möglichkeit, die normale und pathologische fetale Lungenentwicklung zu untersuchen. Ein wesentlicher Risikofaktor für eine Beeinträchtigung der Lungenentwicklung ist die verminderte Fruchtwassermenge nach vorzeitigem Blasensprung. In diesen Fällen kann die MR-Volumetrie dazu eingesetzt werden, die Größe der fetalen Lungen relativ genau zu bestimmen. Gemeinsam mit der Beurteilung der MR-Signalintensitäten des Lungengewebes auf T2-gewichteten Sequenzen können Feten mit hypoplastischen Lungen mit zunehmender Sicherheit bereits pränatal identifiziert werden.

Abstract

A well-organized interplay between many molecular factors as well as mechanical forces influence fetal lung development. At the end of this complex process a sufficiently sized and structurally mature organ should ensure the postnatal survival of the newborn. Besides prenatal ultrasonography, magnetic resonance imaging (MRI) can now be used to investigate normal and pathological human lung growth in utero. Oligohydramnios, due to premature rupture of membranes (PROM), is an important risk factor for compromised fetal lung growth. In these situations MR volumetry can be used to measure the size of the fetal lung quite accurately. Together with the evaluation of lung signal intensities on T2-weighted sequences, fetuses with pulmonary hypoplasia can be readily detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. American College of Obstetricians and Gynecologists (1995) Committee on obstetric practice. Guidelines for diagnostic imaging during pregnancy. ACOG Comm Opin 158:1–4

    Google Scholar 

  2. Bolt RJ, van Weissenbruch MM, Lafeber HN et al. (2001) Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol 32:76–91

    Article  PubMed  Google Scholar 

  3. Brace RA (1997) Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 40:280–289

    Article  PubMed  Google Scholar 

  4. Brewerton LJ, Chari RS, Liang Y et al. (2005) Fetal lung-to-liver signal intensity ratio at MR imaging: development of a normal scale and possible role in predicting pulmonary hypoplasia in utero. Radiology 235:1005–1010; Epub 2005 Apr 1021

    PubMed  Google Scholar 

  5. De Vries JI, Visser GH, Prechtl HF (1985) The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev 12:99–120

    Article  PubMed  Google Scholar 

  6. Duncan KR, Gowland PA, Freeman A et al. (1999) The changes in magnetic resonance properties of the fetal lungs: a first result and a potential tool for the non-invasive in utero demonstration of fetal lung maturation. Br J Obstet Gynaecol 106:122–125

    PubMed  Google Scholar 

  7. Duncan KR, Gowland PA, Moore RJ et al. (1999) Assessment of fetal lung growth in utero with echo-planar MR imaging. Radiology 210:197–200

    PubMed  Google Scholar 

  8. Harding R, Hooper SB (1996) Regulation of lung expansion and lung growth before birth. J Appl Physiol 81:209–224

    PubMed  Google Scholar 

  9. Harding R, Hooper SB (2001) Respiratory system. In: Bocking AD, Harding R (eds) Fetal growth and development. Cambridge University Press, Cambridge, pp 114–137

  10. Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43

    Article  PubMed  Google Scholar 

  11. Keller TM, Rake A, Michel SC et al. (2004) MR assessment of fetal lung development using lung volumes and signal intensities. Eur Radiol 14:984–989; Epub 2004 Mar 2011

    Article  PubMed  Google Scholar 

  12. Kilbride HW, Yeast J, Thibeault DW (1996) Defining limits of survival: lethal pulmonary hypoplasia after midtrimester premature rupture of membranes. Am J Obstet Gynecol 175:675–681

    Article  PubMed  Google Scholar 

  13. Kuwashima S, Nishimura G, Iimura F et al. (2001) Low-intensity fetal lungs on MRI may suggest the diagnosis of pulmonary hypoplasia. Pediatr Radiol 31:669–672

    Article  PubMed  Google Scholar 

  14. Langston C, Kida K, Reed M et al. (1984) Human lung growth in late gestation and in the neonate. Am Rev Respir Dis 129:607–613

    PubMed  Google Scholar 

  15. Laudy JA, Wladimiroff JW (2000) The fetal lung. 2: pulmonary hypoplasia. Ultrasound Obstet Gynecol 16:482–494

    Article  PubMed  Google Scholar 

  16. Levine D, Barnewolt CE, Mehta TS et al. (2003) Fetal thoracic abnormalities: MR imaging. Radiology 228:379–388; Epub 2003 Jun 2023

    PubMed  Google Scholar 

  17. McCray PB Jr, Bettencourt JD, Bastacky J (1992) Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Physiol 262:L270–279

    PubMed  Google Scholar 

  18. McIntosh N, Harrison A (1994) Prolonged premature rupture of membranes in the preterm infant: a 7 year study. Eur J Obstet Gynecol Reprod Biol 57:1–6

    Article  PubMed  Google Scholar 

  19. Natale R, Nasello-Paterson C, Connors G (1988) Patterns of fetal breathing activity in the human fetus at 24 to 28 weeks of gestation. Am J Obstet Gynecol 158:317–321

    PubMed  Google Scholar 

  20. Osada H, Kaku K, Masuda K et al. (2004) Quantitative and qualitative evaluations of fetal lung with MR imaging. Radiology 231:887–892; Epub 2004 Apr 2029

    PubMed  Google Scholar 

  21. Pohls UG, Rempen A (1998) Fetal lung volumetry by three-dimensional ultrasound. Ultrasound Obstet Gynecol 11:6–12

    Article  PubMed  Google Scholar 

  22. Pringle KC (1986) Human fetal lung development and related animal models. Clin Obstet Gynecol 29:502–513

    PubMed  Google Scholar 

  23. Reid L (1977) Edward B.D. Neuhauser lecture: the lung: growth and remodeling in health and disease. AJR Am J Roentgenol 129:777–788

    PubMed  Google Scholar 

  24. Rypens F, Metens T, Rocourt N et al. (2001) Fetal lung volume: estimation at MR imaging-initial results. Radiology 219:236–241

    PubMed  Google Scholar 

  25. Sabogal JC, Becker E, Bega G et al. (2004) Reproducibility of fetal lung volume measurements with 3-dimensional ultrasonography. J Ultrasound Med 23:347–352

    PubMed  Google Scholar 

  26. Thibeault DW, Beatty EC Jr, Hall RT et al. (1985) Neonatal pulmonary hypoplasia with premature rupture of fetal membranes and oligohydramnios. J Pediatr 107:273–277

    PubMed  Google Scholar 

  27. Thurlbeck WM (1982) Postnatal human lung growth. Thorax 37:564–571

    PubMed  Google Scholar 

  28. Wedegaertner U, Tchirikov M, Habermann C et al. (2004) Fetal sheep with tracheal occlusion: monitoring lung development with MR imaging and B-mode US. Radiology 230:353–358; Epub 2003 Dec 2029

    PubMed  Google Scholar 

  29. Wigglesworth JS, Hislop AA, Desai R (1991) Biochemical and morphometric analyses in hypoplastic lungs. Pediatr Pathol 11:537–549

    PubMed  Google Scholar 

  30. Xiao ZH, Andre P, Lacaze-Masmonteil T et al. (2000) Outcome of premature infants delivered after prolonged premature rupture of membranes before 25 weeks of gestation. Eur J Obstet Gynecol Reprod Biol 90:67–71

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kasprian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasprian, G., Brugger, P.C., Helmer, H. et al. Fetale Lungenentwicklung in der MRT. Radiologe 46, 120–127 (2006). https://doi.org/10.1007/s00117-005-1321-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-005-1321-z

Schlüsselwörter

Keywords

Navigation