Skip to main content
Log in

Funktionelle Magnetresonanztomographie und Antipsychotika

Überblick und eigene Daten

Functional magnetic resonance imaging and antipsychotics

Overview and own data

  • Funktionelle Bildgebung in der Psychiatrie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Zunehmend wird die funktionelle Magnetresonanztomographie (fMRT) auch in der Evaluation psychopharmakologischer Substanzen eingesetzt. fMRT-Studien bei Gesunden und psychiatrischen Patienten konzentrierten sich auf die veränderte zerebrale Aktivität bei akuter Substanzapplikation und adaptive Effekte der Langzeitmedikation auf neuronale Netzwerke. In eigenen fMRT-Studien wurde longitudinal der Effekt von Olanzapin bzw. Amisulprid in neuroleptikanaiven und medikamentenfreien schizophrenen Patienten mit motorischen und visuo-akustischen Aufgaben untersucht. Dabei zeigte sich in Übereinstimmung mit Literaturbefunden, dass es im Gegensatz zu traditionellen Neuroleptika unter atypischen Antipsychotika nicht zu einer Aktivitätsabnahme im sensomotorischen Kortex kommt bzw. sich eine vorab vorliegende frontoparietale Aktivitätsminderung sowie neuropsychologische Testbefunde normalisieren. Dies stützt die Annahme, wonach atypische Antipsychotika zur Normalisierung frontoparietaler Dysfunktion bei Schizophrenie beitragen können. Eine große Zahl methodologischer Einschränkungen gilt es jedoch bei der Bewertung der bildgebenden Befunde zu beachten.

Abstract

Recently, there has been growing interest in using functional magnetic resonance imaging (fMRI) for the evaluation of psychopharmacological drugs. fMRI studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects on neural networks due to long-term medication. In our own fMRI studies, the effects of olanzapine or amisulpride in never treated or medication-free schizophrenic patients using robust motor, visual, and acoustic tasks was longitudinally examined. In agreement with previous reports in the literature it could be shown that, in contrast to traditional neuroleptics, atypical drugs do not decrease the activation of the sensorimotor cortex but rather normalize the reduced frontoparietal activation as well as the neuropsychological test results. This encourages the assumption that atypical antipsychotics seem to support the recovery or normalization of frontoparietal brain dysfunction in schizophrenia. However, with these new opportunities additional methodological considerations and limitations emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 46: 908–920

    Article  Google Scholar 

  2. Bartlett EJ, Brodie JD, Simkowitz P et al. (1994) Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects. Am J Psychiatry 151: 681–686

    Google Scholar 

  3. Bertolino A, Blasi G, Caforio G, Latorre V, De Candia M, Rubino V, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Functional lateralization of the sensorimotor cortex in patients with schizophrenia: effects of treatment with olanzapine. Biol Psychiatry 56: 190–197

    Article  Google Scholar 

  4. Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Interaction of COMT Val108/158 Met genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161: 1798–1805

    Article  Google Scholar 

  5. Brassen S, Tost H, Hoehn F, Weber-Fahr W, Klein S, Braus DF (2003) Haloperidol challenge in healthy male humans: a functional magnetic resonance imaging study. Neurosci Lett 340: 193–196

    Article  Google Scholar 

  6. Braus DF, Krier A, Sartorius A, Ende G, Hubrich-Ungureanu P, Henn FA (1997) Effects of haloperidol and lorazepam on fMRI data in healthy subjects. Third International Conference on Functional Mapping of the Human Brain. NeuroImage 5: 367

    Google Scholar 

  7. Braus DF, Ende G, Weber-Fahr W, Sartorius A, Krier A, Hubrich-Ungureanu P, Ruf M, Stuck S, Henn FA (1999) Antipsychotic drug effects on motor activation measured by functional magnetic resonance imaging in schizophrenic patients. Schizophr Res 39: 19–29

    Article  Google Scholar 

  8. Braus DF, Ende G, Tost H, Weber-Fahr W, Jatzko A, Schmitt A, Demirakca T, Ruf M (2000) Funktionelle Kernspintomographie und Schizophrenie: Medikamenteneffekte, methodische Grenzen und Perspektiven. Nervenheilkunde 3: 121–128

    Google Scholar 

  9. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Tost H, Henn FA (2002) Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia. Eur Neuropsychopharmacol 12: 145–152

    Article  CAS  PubMed  Google Scholar 

  10. Braus DF, Weber-Fahr W, Tost H, Ruf M, Henn FA (2002) Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study. Arch Gen Psychiatry 59: 696–701

    Article  Google Scholar 

  11. Braus DF, Brassen S, Weimer E, Tost H (2003) Funktionelle Kernspintomographie (fMRI) und Psychopharmakaeffekte: eine Standortbestimmung. Fortschr Neurol Psychiatr 71: 72–83

    Article  Google Scholar 

  12. Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38: 389–398

    CAS  PubMed  Google Scholar 

  13. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922

    Article  CAS  PubMed  Google Scholar 

  14. Hagino H, Tabuchi E, Kurachi M, Saitoh O, Sun Y, Kondoh T, Ono T, Torii K (1998) Effects of D2 dopamine receptor agonist and antagonist on brain activity in the rat assessed by functional magnetic resonance imaging. Brain Res 813: 367–373

    Article  Google Scholar 

  15. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 96: 13.432–13.437

    Article  Google Scholar 

  16. Jezzard P, Rauschecker JP, Malonek D (1997) An in vivo model for functional MRI in cat visual cortex. Magn Reson Med 38: 699–705

    Google Scholar 

  17. Kleinschmidt A, Bruhn H, Kruger G, Merboldt KD, Stoppe G, Frahm J (1999) Effects of sedation, stimulation, and placebo on cerebral blood oxygenation: a magnetic resonance neuroimaging study of psychotropic drug action. NMR Biomed 12: 286–292

    Article  Google Scholar 

  18. Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses. Exp Brain Res 143: 359–372

    Article  Google Scholar 

  19. Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21: 314–318

    Article  Google Scholar 

  20. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23: 3963–3971

    Google Scholar 

  21. Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2: 555–562

    Article  Google Scholar 

  22. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157

    Article  Google Scholar 

  23. Northoff G, Braus DF, Sartorius A, Khoram-Sefat D, Russ M, Eckert J, Herrig M, Leschinger A, Bogerts B, Henn FA (1999) Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI. Psychol Med 29: 997–1002

    Article  Google Scholar 

  24. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    Google Scholar 

  25. Preece M, Mukherjee B, Huang CL, Hall LD, Leslie RA, James MF (2001) Detection of pharmacologically mediated changes in cerebral activity by functional magnetic resonance imaging: the effects of sulpiride in the brain of the anaesthetised rat. Brain Res 916: 107–114

    Article  Google Scholar 

  26. Reese T, Bjelke B, Porszasz R, Baumann D, Bochelen D, Sauter A, Rudin M (2000) Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed 13: 43–49

    Article  Google Scholar 

  27. Schlosser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P (2003) Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 19: 751–763

    Article  Google Scholar 

  28. Schmitt A, Weber-Fahr W, Jatzko A, Tost H, Henn FA, Braus DF (2001) Aktueller Überblick über strukturelle Magnetresonanztomographie bei Schizophrenie. Fortschr Neurol Psychiatr 69: 105–115

    Article  Google Scholar 

  29. Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36: 1195–1210

    Article  Google Scholar 

  30. Stephan KE, Magnotta VA, White T, Arndt S, Flaum M, O’Leary DS, Andreasen NC (2001) Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med 31: 1065–1078

    Article  Google Scholar 

  31. Vollm BA, Araujo IE de, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology 29: 1715–1722

    Article  Google Scholar 

  32. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303: 1162–1167

    Article  Google Scholar 

  33. Yang X, Hyder F, Shulman RG (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci USA 93: 475–478

    Article  Google Scholar 

  34. Zhang Z, Andersen AH, Avison MJ, Gerhardt GA, Gash DM (2000) Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res 852: 290–296

    Article  Google Scholar 

Download references

Danksagung

Dank gilt den Mitarbeiter(inne)n der Arbeitsgruppe NMR-Forschung in der Psychiatrie am Zentralinstitut für Seelische Gesundheit in Mannheim für ihre Mitarbeiten an der Datenakquisition und Auswertung eines Teils der hier vorgestellten Befunde.

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: „Unrestricted research grants“ der Firmen Lilly Deutschland, Sanofi-Aventis Berlin, AstraZeneca Wedel und Pfizer, Karlsruhe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Braus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braus, D.F., Brassen, S. Funktionelle Magnetresonanztomographie und Antipsychotika. Radiologe 45, 178–185 (2005). https://doi.org/10.1007/s00117-004-1156-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1156-z

Schlüsselwörter

Keywords

Navigation