Skip to main content
Log in

Liquordiagnostik bei Multipler Sklerose

Cerebrospinal fluid diagnostics in multiple sclerosis

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Multiple Sklerose (MS) geht als chronisch-entzündliche Erkrankung des zentralen Nervensystems (ZNS) mit typischen Veränderungen im Liquor einher. In der Diagnostik der MS ist die Liquoruntersuchung daher neben der Magnetresonanztomographie ein zentrales Verfahren, welches einerseits die Diagnose einer MS untermauern und andererseits hilfreich in der Abgrenzung von Differenzialdiagnosen sein kann. Der wichtigste Liquorbefund bei der MS ist der Nachweis einer persistierenden polyspezifischen intrathekalen Immunglobulinsynthese. Diese Übersichtsarbeit gibt einen Überblick über Liquorbefunde bei der MS, weist auf praxisrelevante Aspekte und diagnostische Fallstricke hin und stellt neue Entwicklungen in der Liquordiagnostik bei der MS dar.

Abstract

As a chronic inflammatory disease of the central nervous system (CNS), multiple sclerosis (MS) is associated with characteristic abnormalities in cerebrospinal fluid (CSF). Thus, in addition to magnetic resonance imaging, CSF examination is a central diagnostic procedure in patients with MS, which can corroborate a diagnosis of MS and may also help to discern differential diagnoses. The most important CSF finding in MS is the detection of persistent polyspecific intrathecal immunoglobulin synthesis. This review summarizes CSF findings of patients with MS and addresses issues of relevance for clinical practice, potential diagnostic pitfalls as well as new developments in CSF diagnostics of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Andersson M, Alvarez-Cermeno J, Bernardi G et al (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J Neurol Neurosurg Psychiatr 57:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brecht I, Weissbrich B, Braun J et al (2012) Intrathecal, polyspecific antiviral immune response in oligoclonal band negative multiple sclerosis. PLOS ONE 7:e40431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brettschneider J, Petzold A, Junker A et al (2006) Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 12:143–148

    Article  CAS  PubMed  Google Scholar 

  4. Canto E, Tintore M, Lm V et al (2015) Chitinase 3‑like 1: Prognostic biomarker in clinically isolated syndromes. Brain 138:918–931

    Article  PubMed  Google Scholar 

  5. Dobson R, Ramagopalan S, Davis A et al (2013) Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: A meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatr 84:909–914

    Article  PubMed  Google Scholar 

  6. Gunnarsson M, Malmestrom C, Axelsson M et al (2011) Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 69:83–89

    Article  CAS  PubMed  Google Scholar 

  7. Halbgebauer S, Huss A, Buttmann M et al (2016) Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis. J Neurol 263:954–960

    Article  CAS  PubMed  Google Scholar 

  8. Hassan-Smith G, Durant L, Tsentemeidou A et al (2014) High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis. J Neuroimmunol 276:175–179

    Article  CAS  PubMed  Google Scholar 

  9. Hottenrott T, Dersch R, Berger B et al (2015) The intrathecal, polyspecific antiviral immune response in neurosarcoidosis, acute disseminated encephalomyelitis and autoimmune encephalitis compared to multiple sclerosis in a tertiary hospital cohort. Fluids Barriers CNS 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jacobi C, Lange P, Reiber H (2007) Quantitation of intrathecal antibodies in cerebrospinal fluid of subacute sclerosing panencephalitis, herpes simplex encephalitis and multiple sclerosis: discrimination between microorganism-driven and polyspecific immune response. J Neuroimmunol 187:139–146

    Article  CAS  PubMed  Google Scholar 

  11. Jarius S, Eichhorn P, Jacobi C et al (2009) The intrathecal, polyspecific antiviral immune response: Specific for MS or a general marker of CNS autoimmunity? J Neurol Sci 280:98–100

    Article  CAS  PubMed  Google Scholar 

  12. Jarius S, Paul F, Franciotta D et al (2011) Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 306:82–90

    Article  CAS  PubMed  Google Scholar 

  13. Kuhle J, Barro C, Disanto G et al (2016) Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult Scler 2016(Jan 11):pii:1352458515623365 (Epub ahead of print)

    Google Scholar 

  14. Kuhle J, Disanto G, Dobson R et al (2015) Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Mult Scler. doi:10.1177/1352458514568827

    Google Scholar 

  15. Kuhle J, Plattner K, Bestwick JP et al (2013) A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler 19:1597–1603

    Article  PubMed  Google Scholar 

  16. Liebsch R, Kornhuber ME, Dietl D et al (1996) Blood-CSF barrier integrity in multiple sclerosis. Acta Neurol Scand 94:404–410

    Article  CAS  PubMed  Google Scholar 

  17. Link H, Ym H (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: An update on methodology and clinical usefulness. J Neuroimmunol 180:17–28

    Article  CAS  PubMed  Google Scholar 

  18. Otto C, Hofmann J, Finke C et al (2014) The fraction of varicella zoster virus-specific antibodies among all intrathecally-produced antibodies discriminates between patients with varicella zoster virus reactivation and multiple sclerosis. Fluids Barriers CNS 11:3. doi:10.1186/2045-8118-11-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Otto C, Hofmann J, Ruprecht K (2016) Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein-Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med Hypotheses 91:109–113

    Article  CAS  PubMed  Google Scholar 

  20. Otto C, Oltmann A, Stein A et al (2011) Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology 76:1316–1321

    Article  CAS  PubMed  Google Scholar 

  21. Petereit H‑F, Reske D (2005) Expansion of antibody reactivity in the cerebrospinal fluid of multiple sclerosis patients – follow-up and clinical implications. Cerebrospinal Fluid Res 2:3. doi:10.1186/1743-8454-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pohl D, Rostasy K, Jacobi C et al (2009) Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis. J Neurol 257:212–216

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  24. Presslauer S, Milosavljevic D, Huebl W et al (2016) Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: A multicenter study. Mult Scler 22:502–510

    Article  PubMed  Google Scholar 

  25. Reiber H, Lange P (1991) Quantification of virus-specific antibodies in cerebrospinal fluid and serum: Sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160

    CAS  PubMed  Google Scholar 

  26. Reiber H, Ungefehr S, Jacobi C (1998) The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 4:111–117

    Article  CAS  PubMed  Google Scholar 

  27. Senel M, Tumani H, Lauda F et al (2014) Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLOS ONE 9:e88680

    Article  PubMed  PubMed Central  Google Scholar 

  28. Storch-Hagenlocher B, Oschmann P, Wildemann B (2006) Nicht erregerbedingte Entzündungen vom Autoimmuntyp. In: Wildemann B, Oschmann P, Reiber H (Hrsg) Neurologische Labordiagnostik. Thieme, Stuttgart, New York, S 142–145

    Google Scholar 

  29. Storch-Hagenlocher B, Reiber H, Wildemann B et al (2006) Liquordiagnostik. In: Wildemann B, Oschmann P, Reiber H (Hrsg) Neurologische Labordiagnostik. Thieme, Stuttgart, New York, S 45–54

    Google Scholar 

  30. Tintore M, Rovira A, Rio J et al (2008) Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70:1079–1083

    Article  CAS  PubMed  Google Scholar 

  31. Tumani H, Deisenhammer F, Giovannoni G et al (2011) Revised McDonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann Neurol 70:520 (author reply 521)

    Article  PubMed  Google Scholar 

  32. Walsh MJ, Tourtellotte WW (1986) Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med 163:41–53

    Article  CAS  PubMed  Google Scholar 

  33. Wengert O, Rothenfusser-Korber E, Vollrath B et al (2013) Neurosarcoidosis: Correlation of cerebrospinal fluid findings with diffuse leptomeningeal gadolinium enhancement on MRI and clinical disease activity. J Neurol Sci 335:124–130

    Article  PubMed  Google Scholar 

  34. Zeman AZ, Kidd D, McLean BN et al (1996) A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatr 60:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tumani.

Ethics declarations

Interessenkonflikt

K. Ruprecht und H. Tumani geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruprecht, K., Tumani, H. Liquordiagnostik bei Multipler Sklerose. Nervenarzt 87, 1282–1287 (2016). https://doi.org/10.1007/s00115-016-0220-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0220-z

Schlüsselwörter

Keywords

Navigation