Skip to main content
Log in

Klinik und Genetik der rezessiven Ataxien

Clinical details and genetics of recessive ataxias

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die autosomal-rezessiv vererbten Ataxien (ARCA) bilden eine Gruppe seltener neurologischer Erkrankungen mit Beteiligung des zentralen und des peripheren Nervensystems. In der Regel zeigen sich erste Symptome einer progredienten Ataxie vor dem 30. Lebensjahr. Im Verlauf wird eine fortschreitende Neurodegeneration im Zerebellum und Rückenmark sichtbar. Unter Kaukasiern zeigt die Friedreich-Ataxie die höchste Frequenz, gefolgt von Ataxien mit okulomotorischer Apraxie. Insgesamt ist jedoch jede Form sehr selten. Für einzelne Erkrankungen sind die betroffenen Gene bekannt und können auf Mutationen untersucht werden, während für weitere Entitäten bisher nur die chromosomale Lokalisation bestimmt werden konnte. Die klinisch gestellte Diagnose ist durch ergänzende laborchemische und elektrophysiologische Untersuchungen, bildgebende Verfahren und molekulargenetische Analysen abzusichern. Die korrekte Diagnose kann entscheidend für die Prognose, die genetische Beratung und die medikamentöse Behandlung der Patienten sein. Allerdings ist für die Mehrzahl der ARCA keine kausale Therapie verfügbar.

Summary

Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological diseases affecting both the central and the peripheral nervous systems. They are characterized by autosomal recessive inheritance, progressive ataxia and degeneration of the cerebellum and spinal cord. Onset is generally before the third decade of life. The most frequent of these rare disorders in the Caucasian population is Friedreich’s ataxia followed by ataxias with oculomotor apraxia. ARCAs are caused by mutations at specific loci but not every affected gene is known to date. Clinical diagnosis can be confirmed by ancillary tests (biochemical, neuroimaging and electrophysiological investigations) and mutation analyses if the causative gene has been identified. Correct clinical and genetic diagnosis is necessary for prognosis, genetic counseling and pharmacological treatment. For the majority of ARCAs a curative treatment is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. IHGC International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  2. Schulz JB, Boesch S, Bürk K et al (2009) Diagnosis and treatment of friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234

    Article  PubMed  Google Scholar 

  3. Dürr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich‘s ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  Google Scholar 

  4. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  PubMed  CAS  Google Scholar 

  5. Pandolfo M (2008) Friedreich ataxia. Arch Neurol 65:1296–1303

    Article  PubMed  Google Scholar 

  6. Pineda M, Arpa J, Montero R et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: Long-term follow-up. Eur J Paediatr Neurol 12:470–475

    Article  PubMed  Google Scholar 

  7. Palau F, Espinós C (2006) Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis I:47

    Article  Google Scholar 

  8. Silva MC, Coutinho P, Pinheiro CD et al (1997) Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 50:1377–1384

    Article  PubMed  CAS  Google Scholar 

  9. Campuzano V, Montermini L, Molto MD et al (1996) Friedreich‘s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  10. De Castro M, García-Planells J, Monrós E et al (2000) Genotype and phenotype analysis of Friedreich’s ataxia compound heterozygous patients. Hum Genet 106:86–92

    Article  Google Scholar 

  11. Zühlke CH, Dalski A, Habeck M et al (2004) Extension of the mutation spectrum in Friedreich‘s Ataxia: Detection of an exon deletion and novel missense mutations. Eur J Hum Genet 12:979–982

    Article  PubMed  Google Scholar 

  12. Boder E (1985) Ataxia-telangiectasia: an overview. In: Gatti RA, Swift M (Hrsg) Ataxia-telangiectasia: genetics, neuropathy, and immunology of a degenerative disease of childhood. Alan R Liss, New York, S 1–63

  13. Gatti RA (2002) Ataxia-telangiectasia. In: Vogelstein B, Kinzler KW (Hrsg) The genetic basis of human cancer. McGraw-Hill, New York, S 239–265

  14. Perlman S, Becker-Catania S, Gatti RA (2003) Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol 10:173–182

    Article  PubMed  Google Scholar 

  15. Lewis RF, Lederman HM, Crawford TO (1999) Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol 46:287–295

    Article  PubMed  CAS  Google Scholar 

  16. Farr AK, Shalev B, Crawford TO et al (2002) Ocular manifestations of ataxia-telangiectasia. Am J Ophthalmol 134:891–896

    Article  PubMed  Google Scholar 

  17. Seidemann K, Henze G, Beck JD et al (2000) Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol 11(Suppl 1):141–145

    Article  PubMed  Google Scholar 

  18. Cox R, Hosking GP, Wilson J (1978) Ataxia telangiectasia. Evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test. Arch Dis Child 53:386–390

    Article  PubMed  CAS  Google Scholar 

  19. Woods CG, Budney SE, Taylor AM (1990) Unusual features in the inheritance of ataxia telangiectasia. Hum Genet 84:555–562

    Article  PubMed  CAS  Google Scholar 

  20. Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  PubMed  CAS  Google Scholar 

  21. Savitsky K, Sfez S, Tagle DA et al (1995) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032

    Article  PubMed  CAS  Google Scholar 

  22. Chen G, Lee EYHP (1996) The product of the ATM gene is a 370-kDa nuclear phosphoprotein. J Biol Chem 271:33693–33697

    Article  PubMed  CAS  Google Scholar 

  23. Le Ber I, Moreira MC, Rivaud-Pechoux S et al (2003) Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 126:2761–2772

    Article  Google Scholar 

  24. Barbot C, Coutinho P, Chorao R et al (2001) Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 58:201–205

    Article  PubMed  CAS  Google Scholar 

  25. Zühlke C, Bernard V, Gillessen-Kaesbach G (2007) Investigation of recessive ataxia loci in patients with young age of onset. Neuropediatrics 38:207–209

    Article  PubMed  Google Scholar 

  26. Moreira MC, Barbot C, Tachi N et al (2001) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2:189–193

    Article  Google Scholar 

  27. Date H, Onodera O, Tanaka H et al (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2:184–188

    Article  Google Scholar 

  28. Amouri R, Moreira MC, Zouari M et al (2004). Aprataxin gene mutations in Tunisian families. Neurology 63:928–929

    PubMed  CAS  Google Scholar 

  29. Criscuolo C, Mancini P, Saccà F et al (2004) Ataxia with oculomotor apraxia type 1 in Southern Italy: late onset and variable phenotype. Neurology 63:2173–2175

    PubMed  CAS  Google Scholar 

  30. Habeck M, Zühlke C, Bentele KH et al (2004) Aprataxin mutations are a rare cause of early onset ataxia in Germany. J Neurol 251:591–594

    Article  PubMed  CAS  Google Scholar 

  31. Moreira MC, Klur S, Watanabe M et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia. Nat Genet 36:225–227

    Article  PubMed  CAS  Google Scholar 

  32. Le Ber I, Bouslam N, Rivaud-Pechoux S et al (2004) Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 127:759–767

    Article  Google Scholar 

  33. Duquette A, Roddier K, McNabb-Baltar J et al (2005) Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 57:408–414

    Article  PubMed  CAS  Google Scholar 

  34. Fogel BL, Perlman S (2006) Novel mutations in the senataxin DNA/RNA helicase domain in ataxia with oculomotor apraxia 2. Neurology 67:2083–2084

    Article  PubMed  Google Scholar 

  35. Criscuolo C, Chessa L, Di Giandomenico S et al (2006) Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology 66:1207–1210

    Article  PubMed  CAS  Google Scholar 

  36. Anheim M, Fleury MC, Franques J et al (2008) Clinical and molecular findings of ataxia with oculomotor apraxia type 2 in 4 families. Arch Neurol 65:958–962

    Article  PubMed  Google Scholar 

  37. Rabin BA, Griffin JW, Crain B et al (1999) Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122:1539–1550

    Article  PubMed  Google Scholar 

  38. Zühlke CH, Bernard V, Stricker S et al (2009) Mutationen im Senataxin-Gen: Ursache für Ataxie, amyotrophe Lateralsklerose oder Tremor. Aktuelle Neurol 36:532–535

    Article  Google Scholar 

  39. Bassuk AG, Chen YZ, Batish SD et al (2007) In cis autosomal dominant mutation of senataxin associated with tremor/ataxia syndrome. Neurogenetics 8:45–49

    Article  PubMed  CAS  Google Scholar 

  40. Richter A, Morgan K, Bouchard JP et al (1993) Clinical and molecular genetic studies on Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). Adv Neurol 61:97–103

    PubMed  CAS  Google Scholar 

  41. Vermeer S, Meijer RP, Pijl BJ et al (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 9:207–214

    Article  PubMed  Google Scholar 

  42. Criscuolo C, Banfi S, Orio M et al (2004) A novel mutation in SACS gene in a family from Southern Italy. Neurology 62:100–102

    PubMed  CAS  Google Scholar 

  43. Criscuolo C, Saccà F, De Michele G et al (2005) Novel mutation of SACS gene in a Spanish family with autosomal recessive spastic ataxia. Mov Disord 20:1358–1361

    Article  PubMed  Google Scholar 

  44. Richter AM, Ozgul RK, Poisson VC et al (2004) Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 5:165–170

    Article  PubMed  CAS  Google Scholar 

  45. Kamada S, Okawa S, Imota T et al (2008) Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS): novel compound heterozygous mutations in the SACS gene. J Neurol 255:803–806

    Article  PubMed  CAS  Google Scholar 

  46. Engert JC, Bérubé P, Mercier J et al (2000) ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24:120–125

    Article  PubMed  CAS  Google Scholar 

  47. Nikali K, Suomalainen A, Saharinen J et al (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins twinkle and twinky. Hum Mol Genet 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  48. Hakonen AH, Isohanni P, Paetau A et al (2007) Recessive twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130:3032–3040

    Article  PubMed  Google Scholar 

  49. Spelbrink JN, Li FY, Tiranti V et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    Article  PubMed  CAS  Google Scholar 

  50. Hakonen AH, Heiskanen S, Juvonen V et al (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77:430–441

    Article  PubMed  CAS  Google Scholar 

  51. Winterthun S, Ferrari G, He L, Taylor RW et al (2005) Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 64:1204–1208

    PubMed  CAS  Google Scholar 

  52. González-Vioque E, Blázquez A, Fernández-Moreira D et al (2006) Association of novel POLG mutations and multiple mitochondrial DNA deletions with variable clinical phenotypes in a Spanish population. Arch Neurol 63:107–111

    Article  PubMed  Google Scholar 

  53. Van Goethem G, Luoma P, Rantamäki M et al (2004) POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 63:1251–1257

    Google Scholar 

  54. Rantamäki M, Luoma P, Virta JJ et al (2007) Do carriers of POLG mutation W748S have disease manifestations? Clin Genet 72:532–537

    Article  PubMed  Google Scholar 

  55. Hakonen AH, Davidzon G, Salemi R et al (2007) Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur J Hum Genet 15:779–783

    Article  PubMed  CAS  Google Scholar 

  56. Ferrari G, Lamantea E, Donati A et al (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 128:723–731

    Article  PubMed  Google Scholar 

  57. Dupré N, Gros-Louis F, Chrestian N et al (2007). Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98

    Article  PubMed  Google Scholar 

  58. Gros-Louis F, Dupré N, Dion P et al (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  PubMed  CAS  Google Scholar 

  59. Cavalier L, Ouahchi K, Kayden HJ et al (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310

    Article  PubMed  CAS  Google Scholar 

  60. Harding AE, Matthews S, Jones S et al (1985) Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med 313:32–35

    Article  PubMed  CAS  Google Scholar 

  61. Martinello F, Fardin P, Ottina M et al (1998). Supplemental therapy in isolated vitamin E deficiency improves the peripheral neuropathy and prevents the progression of ataxia. J Neurol Sci 156:177–179

    Article  PubMed  CAS  Google Scholar 

  62. Hentati A, Deng HX, Hung WY et al (1996) Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 39:295–300

    Article  PubMed  CAS  Google Scholar 

  63. Ouahchi K, Arita M, Kayden H, et al (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9:141–145

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zühlke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zühlke, C., Kreuz, F. & Bürk, K. Klinik und Genetik der rezessiven Ataxien. Nervenarzt 82, 447–458 (2011). https://doi.org/10.1007/s00115-010-3079-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-3079-4

Schlüsselwörter

Keywords

Navigation