Skip to main content
Log in

Combining climatic and soil properties better predicts covers of Brazilian biomes

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab’Saber AN (2000) The natural organization of Brazilian inter- an subtropical landscapes. R Inst Geo 21:57–70

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Arruda DM, Schaefer CE, Corrêa GR, Rodrigues PM, Duque-Brasil R, Ferreira-JR WG, Oliveira-Filho AT (2015) Landforms and soil attributes determine the vegetation structure in the Brazilian semiarid. Folia Geobot 50:175–184

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bueno M, Pennington RT, Dexter KG, Kamino LHY, Pontara L, Neves DRM, Ratter JA, Oliveira-Filho AT (2016) Effects of quaternary climatic fluctuations on the distribution of neotropical savanna tree species. Ecography. doi:10.1111/ecog.01860

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Cawsey EM, Austin MP, Baker BL (2002) Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodivers Conserv 11:2239–2274

    Article  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol 86:101–112

    Article  Google Scholar 

  • Collevatti RG, Terribile LC, Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF (2013) Drawbacks to palaeodistribution modelling: the case of south American seasonally dry forests. J Biogeogr 40:345–358

    Article  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci U S A 106(Suppl 2):19651–19658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino P, Pérez R, Turner B (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Nat Acad Sci USA 110:5064–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coudun C, Gégout JC (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524

    Article  Google Scholar 

  • Coudun C, Gégout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–1763

    Article  Google Scholar 

  • Coutinho LM (2006) O Conceito de bioma. Acta Bot Bras 20:13–23

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157:313–329

    Article  Google Scholar 

  • Ellenberg H, Mueller-Dombois D (1967) Tentative physiognomic-ecological classification of plant formations of the earth. Ber Geobot Inst 37:21–55

    Google Scholar 

  • ESRI (2012) ArcGIS desktop: release 10.1. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Field R, O’Brien EM, Whittaker RJ (2005) Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86:2263–2277

    Article  Google Scholar 

  • FontQuer P (2001) Diccionario de Botánica. Ediciones Península, Barcelona

    Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of central Brazilian cerrado and their development. J Biogeogr 15:97–108

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2011) Princípios de estatística em ecologia. Artmed, Porto Alegre

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (2004) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manag 34(Suppl 1):39–60

    Article  Google Scholar 

  • Harrison SP, Prentice IC, Barboni D (2010) Ecophysiological and bioclimatic foundations for a global plant functional classification. J Veg Sci 21:300–317

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JR (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

  • Hawkins BA, Montoya D, Rodríguez MÁ, Olalla-Tárraga MÁ, Zavala MÁ (2007) Global models for predicting woody plant richness from climate: comment. Ecology 88:255–259

    Article  PubMed  Google Scholar 

  • Heubes J, Kühn I, König K (2011) Modelling biome shifts and tree cover change for 2050 in West Africa. J Biogeogr 38:2248–2258

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Nat Acad Sci USA 106:19659–19665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística (2001) Mapa de Solos do Brasil. Escala 1:5.000.000. IBGE, Brasília

    Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística (2004) Mapa de Vegetação do Brasil. Escala 1:5.000.000. IBGE, Brasília. Available in < ftp://geoftp.ibge.gov.br/informacoes_ambientais/vegetacao/mapas/brasil/vegetacao.pdf>. Accessed in 01/10/2015.

  • IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro

    Google Scholar 

  • Jaramillo VJ, Sanford R (1995) Nutrient cycling in tropical deciduous forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 346–361

    Chapter  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    Article  CAS  Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw. doi:10.18637/jss.v028.i05

    Google Scholar 

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Glob Chang Biol 12:1568–1584

    Article  Google Scholar 

  • Lima JR, Santos ND, Tozzi AM, Mansano VF (2016) Using legumes as indicators in the seasonally dry vegetation types in South America. Ecol Indic. doi:10.1016/j.ecolind.2016.10.030

    Google Scholar 

  • Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob Ecol Biogeogr 22:302–317

    Article  Google Scholar 

  • Mendonça BAF, Simas FNB, Schaefer CEGR, Fernandes-Filho EI, Vale-Júnior JF, Mendonça JGF (2014) Podzolized soils and paleoenvironmental implications of white-sand vegetation (Campinarana) in the Viruá National Park, Brazil. Geoderma Reg 2-3:9–20

    Article  Google Scholar 

  • Miatto RC, Wright IJ, Batalha MA (2016) Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant Soil 404:13–33

    Article  CAS  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the kappa statistic. Ecol Model 62:275–293

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (2003) Aims and methods of vegetation ecology. Blackburn Press, Caldwell

    Google Scholar 

  • Oliveira-Filho AT, Shepherd GJ, Martins FR, Stubblebine WH (1989) Environmental factors affecting physiognomic and floristic variation in an area of cerrado in Central Brazil. J Trop Ecol 5:413–431

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

  • Pappas C, Fatichi S, Rimkus S (2015) The role of local-scale heterogeneities in terrestrial ecosystem modeling. J Geophys Res Biogeosci 120:341–360

    Article  Google Scholar 

  • Pennington TR, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niche and geographical distribution. Princeton University Press, Princeton

    Google Scholar 

  • Prado DE (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot 57:437–461

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189:988–998

    Article  CAS  PubMed  Google Scholar 

  • Queiroz LP (2006) The Brazilian caatinga: Phytogeographical pattern inferred from distribution data of the Leguminosae. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography, and conservation. Taylor and Francis CRC Press, Oxford, pp 113–149

    Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Philos Trans R Soc B 880:449–492

    Article  Google Scholar 

  • Roberts DR, Hamann A (2012) Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Glob Ecol Biogeogr 21:121–133

    Article  Google Scholar 

  • Rodrigues PMS, Silva JO, Eisenlohr PV, Schaefer CEGR (2015) Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Braz J Biol 75:679–684

    Article  CAS  PubMed  Google Scholar 

  • Rossatto DR, Carvalho FA, Haridasan M (2015) Soil and leaf nutrient content of tree species support deciduous forests on limestone outcrops as a eutrophic ecosystem. Acta Bot Bras 29:231–238

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34. doi:10.1029/2007GL029695

  • Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the arboreal caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Särkinen T, Iganci JRV, Linares-Palomino R, Simon MF, Prado D (2011) Forgotten forests – issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecol 11

  • Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8:53–60

    Article  Google Scholar 

  • Schaefer CEGR (2013) Bases físicas da paisagem brasileira: estrutura geológica, relevo e solos. In: Araújo AP, BJR A (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 1–69

    Google Scholar 

  • Schaefer CEGR, Amaral EF, Mendonca BAF, Oliveira H, Lani JL, Costa LM, Fernandes-Filho EI (2008) Soil and vegetation carbon stocks in Brazilian western Amazonia: relationships and ecological implications for natural landscapes. Environ Monit Assess 140:279–289

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CEGR, Nunes JA, Neri AV, Mendonca BAF, Ferreira-Junior WG, Arruda DM, Duque-Brasil R (2015) Relação solo-vegetação em formações vegetacionais brasileiras: metodologia e estudos de caso. In: Eisenlohr PV, Fagg CW, MMRF M, Andrade LA, JAA M-N (eds) Fitossociologia no Brasil: Métodos e Estudos de Casos, vol II. Editora UFV, Viçosa, pp 1–15

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Svenning JC, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S (2011) Applications of species distribution modeling to paleobiology. Quat Sci Rev 30:2930–2947

    Article  Google Scholar 

  • Swaine MD (1996) Rainfall and soil fertility as factors limiting forest species distributions in Ghana. J Ecol 84:419–428

    Article  Google Scholar 

  • Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101

    Article  Google Scholar 

  • Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford University Press, Oxford

    Google Scholar 

  • Werneck FP, Costa GC, Colli GR (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Whittaker RH (1971) Communities and ecosystems, 4th edn. The Macmillan co, New York

    Google Scholar 

Download references

Acknowledgements

This paper was submitted in partial fulfilment of the requirements for the PhD degree of DMA at Universidade Federal de Viçosa. DMA and RRCS were supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful for Drs Rúbia Fonseca, Markus Gastauer, Marcelo Bueno, and some anonymous reviewers for their valuable suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Arruda.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

ESM 1

(DOCX 283 kb)

ESM 2

(DOCX 30.5 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, D.M., Fernandes-Filho, E.I., Solar, R.R.C. et al. Combining climatic and soil properties better predicts covers of Brazilian biomes. Sci Nat 104, 32 (2017). https://doi.org/10.1007/s00114-017-1456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1456-6

Keywords

Navigation