Skip to main content
Log in

Spatial distribution of an infectious disease in a small mammal community

  • Short Communication
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Chagas disease is a zoonosis caused by the parasite Trypanosoma cruzi and transmitted by insect vectors to several mammals, but little is known about its spatial epidemiology. We assessed the spatial distribution of T. cruzi infection in vectors and small mammals to test if mammal infection status is related to the proximity to vector colonies. During four consecutive years we captured and georeferenced the locations of mammal species and colonies of Mepraia spinolai, a restricted-movement vector. Infection status on mammals and vectors was evaluated by molecular techniques. To examine the effect of vector colonies on mammal infection status, we constructed an infection distance index using the distance between the location of each captured mammal to each vector colony and the average T. cruzi prevalence of each vector colony, weighted by the number of colonies assessed. We collected and evaluated T. cruzi infection in 944 mammals and 1976 M. spinolai. We found a significant effect of the infection distance index in explaining their infection status, when considering all mammal species together. By examining the most abundant species separately, we found this effect only for the diurnal and gregarious rodent Octodon degus. Spatially explicit models involving the prevalence and location of infected vectors and hosts had not been reported previously for a wild disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bacigalupo A, Segura JA, García A, Hidalgo J, Galuppo S, Cattan PE (2006) First finding of Chagas disease vectors associated with wild bushes in the metropolitan region of Chile. Rev Med Chile 134:1230–1236

    Article  PubMed  Google Scholar 

  • Botto-Mahan C, Cattan PE, Canals M, Acuña M (2005a) Seasonal variation in the home range and host availability of the blood-sucking insect Mepraia spinolai in wild environment. Acta Trop 95:160–163. doi:10.1016/J.Actatropica.2005.05.001

    Article  PubMed  Google Scholar 

  • Botto-Mahan C, Ortiz S, Rozas M, Cattan PE, Solari A (2005b) DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 100:237–239. doi:10.1590/S0074-02762005000300003

    Article  PubMed  Google Scholar 

  • Botto-Mahan C, Campos R, Acuña-Retamar M, Coronado X, Cattan PE, Solari A (2010) Temporal variation of Trypanosoma cruzi infection in native mammals in Chile. Vector-Borne Zoonot 10:317–319. doi:10.1089/Vbz.2009.0006

    Article  Google Scholar 

  • Botto-Mahan C, Bacigalupo A, Correa JP, Oda E, Solari A (2012) Field assessment of Trypanosoma cruzi infection and host survival in the native rodent Octodon degus. Acta Trop 122:164–167. doi:10.1016/J.Actatropica.2011.12.003

    Article  PubMed  Google Scholar 

  • Brunner JL, Logiudice K, Ostfeld RS (2008) Estimating reservoir competence of Borrelia burgdorferi hosts: prevalence and infectivity, sensitivity, and specificity. J Med Entomol 45:139–147

    Article  PubMed  Google Scholar 

  • Cadiergues MC, Santamarta D, Mallet X, Franc M (2001) First blood meal of Ctenocephalides canis (Siphonaptera: Pulicidae) on dogs: time to initiation of feeding and duration. J Parasitol 87:214–230

    Article  CAS  PubMed  Google Scholar 

  • Canals M, Bustamante RO, Ehrenfeld M, Cattan PE (1998) Assessing the impact of disease vectors on animal populations. Acta Biotheor 46:337–345

    Article  PubMed  Google Scholar 

  • Cecere MC, Vasquez-Prokopec GM, Gürtler RE, Kitron U (2006) Reinfestation sources for Chagas disease vector, Triatoma infestans, Argentina. Emerg Infect Dis 12:1096–1102

    Article  PubMed Central  PubMed  Google Scholar 

  • Chao DL, Longini IM, Halloran ME (2013) The effects of vector movement and distribution in a mathematical model of dengue transmission. PLoS ONE 8:e76044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falco RC, Fish D, Piesman J (1996) Duration of tick bites in a Lyme disease-endemic area. Am J Epidemiol 143:187–192

    Article  CAS  PubMed  Google Scholar 

  • Gorla DE, Noireau F (2010) Geographic distribution of Triatominae vectors in America. In: Telleria J, Tibayrenc M (eds) American Trypanosomiasis Chagas disease: one hundred years of research. Elsevier, Burlington MA, pp 209–223

    Chapter  Google Scholar 

  • Jiménez C, Fontúrbel FE, Oda E, Ramírez PA, Botto-Mahan C (2015) Parasitic infection alters rodent movement in a semiarid ecosystem. Mamm Biol 80:255–259. doi:10.1016/j.mambio.2015.01.006

    Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387. doi:10.1016/S0169-4758(00)01724-5

    Article  CAS  PubMed  Google Scholar 

  • Lima M, Stenseth NC, Leirs H, Jaksic FM (2003) Population dynamics of small mammals in semiarid regions: a comparative study of within-year demographic variability in two rodent species. Proc R Soc B 270:1997–2007

    Article  PubMed Central  PubMed  Google Scholar 

  • Oda E, Solari A, Botto-Mahan C (2014) Effect of mammal host diversity and density on the infection level of Trypanosoma cruzi in sylvatic kissing bugs. Med Vet Entomol 28:384–390. doi:10.1111/mve.12064

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT (2009) Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis 9:59. doi:10.1186/1471-2334-9-59

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements ACA (2008) Spatial analysis in epidemiology. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Previtali MA, Meserve PL, Kelt DA, Milstead WB, Gutierrez JR (2010) Effects of more frequent and prolonged El Niño events on life-history parameters of the Degu, a long-lived and slow-reproducing rodent. Conserv Biol 24:18–28. doi:10.1111/J.1523-1739.2009.01407.X

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing, reference index version 2.15.3. Foundation for Statistical Computing, Viena, Austria

    Google Scholar 

  • Rozas M, Botto-Mahan C, Coronado X, Ortiz S, Cattan PE, Solari A (2007) Coexistence of Trypanosoma cruzi genotypes in wild and periodomestic mammals in Chile. Am J Trop Med Hyg 77:647–653

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the people who helped during the field data collection, F. Peña for molecular analyses and CONAF-Illapel for the logistic support. This study received financial support from FONDECYT 11090086-1140521 (CBM), 1100339-1140650 (PEC-AB), 1120122 (AS) and was partially funded by Program U-Apoya, University of Chile. JPC and FEF were supported by FONDECYT-postdoctoral grants (3140543 and 3140528) and EO by a CONICYT doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carezza Botto-Mahan.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 774 kb)

ESM 2

(DOCX 106 kb)

ESM 3

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, J.P., Bacigalupo, A., Fontúrbel, F.E. et al. Spatial distribution of an infectious disease in a small mammal community. Sci Nat 102, 51 (2015). https://doi.org/10.1007/s00114-015-1304-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1304-5

Keywords

Navigation