Skip to main content
Log in

Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m−1) than spatulate (0.364 ± 0.039 N m−1) or pointed (0.192 ± 0.044 N m−1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100:10603–10606

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006a) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Hansen W (2006) Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A 192:1205–1212

    Article  Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006b) Dynamics of geckos running vertically. J Exp Biol 209:260–272

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006c) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209:3558–3568

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Gravish N (2008) Gecko adhesion: evolutionary nanotechnology. Philos T Roy Soc A 366:1575–1590

    Article  CAS  Google Scholar 

  • Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morphol 255:24–43

    Article  PubMed  Google Scholar 

  • Bullock J, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1876–1888

    Article  PubMed  Google Scholar 

  • Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc B 275:1329–1336

    Article  PubMed  Google Scholar 

  • Clemente CJ, Beale A, Bullock JMR, Federle W (2010) Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. J Exp Biol 213:635–642

    Article  PubMed  Google Scholar 

  • del Campo A, Greiner C, Arzt E (2007) Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23:10235–10243

    Article  PubMed  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Eimüller T, Guttmann P, Gorb SN (2008) Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J Exp Biol 211:1958–1963

    Article  PubMed  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621

    Article  PubMed  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Article  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19:185–193

    Article  CAS  Google Scholar 

  • Gorb E, Gorb S (2009) Effects of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula. Entom Exp Appl 130:222–228

    Article  Google Scholar 

  • Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21:1175–1183

    Article  CAS  Google Scholar 

  • Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5:339–348

    Article  PubMed  Google Scholar 

  • Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389

    Article  PubMed  CAS  Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001

    Article  PubMed  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    Article  PubMed  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48

    Article  PubMed  Google Scholar 

  • Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    PubMed  CAS  Google Scholar 

  • Kaelble DH (1960) Theory and analysis of peel adhesion: bond stresses and distributions. Trans Soc Rheol 4:45–73

    Article  CAS  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  Google Scholar 

  • Majidi CS, Groff RE, Fearing RS (2005) Attachment of fiber array adhesive through side contact. J Appl Phys 98:103521

    Article  Google Scholar 

  • Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21:1281–1296

    Article  CAS  Google Scholar 

  • Pelletier Y, Smilowitz Z (1987) Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. Can Entomol 119:1139–1142

    Article  Google Scholar 

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    Article  CAS  Google Scholar 

  • Spolenak R, Gorb S, Gao H, Arzt E (2004) Effects of contact shape on the scaling of biological attachments. Proc R Soc Lond A 460:1–15

    Article  Google Scholar 

  • Spuskanyuk AV, McMeeking RM, Deshpande VS, Arzt E (2008) The effect of shape on the adhesion of fibrillar surfaces. Acta Biomater 4:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Stork NE (1980a) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J LinnSoc 68:173–306

    Article  Google Scholar 

  • Stork NE (1980b) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Devel 33:187–199

    Article  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Federle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, J.M.R., Federle, W. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae. Naturwissenschaften 98, 381–387 (2011). https://doi.org/10.1007/s00114-011-0781-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0781-4

Keywords

Navigation