Skip to main content
Log in

Evolutionary plant physiology: Charles Darwin’s forgotten synthesis

  • REVIEW
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer–Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ayres P (2008) The aliveness of plants: the Darwins at the dawn of plant science. Pickering & Chatto, London

    Google Scholar 

  • Ballaré CR (2009) Illuminated behaviour. Phytochrome as a key regulator of light foraging and plant anti-herbivore defense. Plant, Cell Environm 32:713–715

    Article  Google Scholar 

  • Barlow N (1958) (ed) The autobiography of Charles Darwin. Collins St James’s Place, London

  • Barlow PW (2006) Charles Darwin and the plant root apex: closing a gap in living systems theory as applied to plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 37–51

    Chapter  Google Scholar 

  • Blum JJ (1977) On the geometry of four dimensions and the relationship between metabolism and body mass. J Theor Biol 64:599–601

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Briggs WR, Spudich J (eds) (2005) Handbook of photosensory receptors. Wiley-VCH, Weinheim

    Google Scholar 

  • Brown AH, Chapman DK, Lewis RF, Venditti AL (1990) Circumnutation of sunflower hypocotyls in satellite orbit. Plant Physiol 94:233–238

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West DB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Burkhardt RW (1977) The spirit of system. Lamarck and evolutionary biology. Harvard University Press, Cambridge

    Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128

    Article  Google Scholar 

  • Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. WW Norton, New York

    Google Scholar 

  • Cholodny N (1928) Beiträge zur hormonalen Theorie von Tropismen. Planta 6:118–134

    Article  Google Scholar 

  • Cooke TJ, Poli DB, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 349:319–338

    Article  Google Scholar 

  • Crepet WL, Niklas KJ (2009) Darwin’s second “abominable mystery”: why are there so many angiosperm species? Amer J Bot 96:366–381

    Article  Google Scholar 

  • Cyr H, Walker SC (2004) An illusion of mechanistic understanding. Ecology 85:1802–1804

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London

    Google Scholar 

  • Darwin C (1867) The movements and habits of climbing plants, 2nd edn. John Murray, London

    Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication (Vols 1 and 2). John Murray, London

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex (Vols 1 and 2). John Murray, London

    Google Scholar 

  • Darwin C (1875) Insectivorous plants. John Murray, London

    Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Darwin F (1909) Darwin’s work on the movements of plants. In: Seward AC (ed) Darwin and modern science. Essays in commemoration of the centenary of the birth of Charles Darwin and the fiftieth anniversary of the publication of The Origin of Species. Cambridge University Press, Cambridge, pp 385–400

    Google Scholar 

  • Darwin F, Acton EH (1894) Practical physiology of plants. Cambridge University Press, Cambridge

    Google Scholar 

  • De Vries H (1901/1903) Die Mutationstheorie. Band 1 und 2. Veit, Leipzig

    Google Scholar 

  • Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4-law” of metabolism. J Theoret Biol 209:9–27

    Article  CAS  Google Scholar 

  • Edelmann HG, Roth U (2006) Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model. Protoplasma 229:183–191

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Feder ME (2002) Plant and animal physiological ecology, comparative physiology/biochemistry, and evolutionary physiology: opportunities for synergy. Integr Comp Biol 42:409–414

    Article  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  PubMed  CAS  Google Scholar 

  • Garland T, Carter PA (1994) Evolutionary physiology. Annu Rev Physiol 56:579–621

    Article  PubMed  Google Scholar 

  • Gould SB, Walker RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Hart JW (1990) Plant tropisms and other growth movements. Chapman & Hall, London

    Google Scholar 

  • Hellmuth J, Kutschera U (2008) The effect of growth-promoting methylobacteria on development in Ginkgo biloba L. J Appl Bot 82:26–29

    Google Scholar 

  • Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB (2008) Energy uptake and allocation during ontogeny. Science 322:736–739

    Article  PubMed  CAS  Google Scholar 

  • Jurik TW (1991) Population distributions of plant size and light environment of ragweed (Ambrosia trifida L.) at three densities. Oecologia 87:539–550

    Article  Google Scholar 

  • Kiss JZ (2006) Up, down, and all around: how plants sense and respond to environmental stimuli. Proc Natl Acad Sci USA 103:829–830

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–332

    CAS  Google Scholar 

  • Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Kutschera U (2003) Auxin-induced cell elongation in grass coleoptiles: a phytohormone in action. Curr Topics Plant Biol 4:27–46

    CAS  Google Scholar 

  • Kutschera U (2006) Acid growth and plant development. Science 311:952–953

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78

    PubMed  Google Scholar 

  • Kutschera U (2008a) The outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101:615–621

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2008b) The pacemaker of plant growth. Trends Plant Sci 13:105–107

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2008c) Darwin-Wallace principle of natural selection. Nature 453:27

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2009a) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften (this issue). doi:10.1007/s00114-009-0603-0

  • Kutschera U (2009b) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci. doi:10.1007/s12064-009-0065-0

  • Kutschera U, Edelmann HG (2005) Osmiophilic nanoparticles in epidermal cells of grass coleoptiles: implications for growth and gravitropism. Rec Res Dev Plant Sci 3:1–14

    CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2006) Photosynthesis research on yellowtops: macroevolution in progress. Theory Biosci 125:81–92

    PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289

    Article  PubMed  CAS  Google Scholar 

  • Li H-T, Han X-G, Wu J-G (2006) Variant scaling relationship for mass-density across tree-dominated communities. J Integr Plant Biol 48:268–277

    Article  Google Scholar 

  • Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Diverstiy, evolution, and inheritance. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1991) One long argument: Charles Darwin and the genesis of modern evolutionary though. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (2004) What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge University Press, Cambridge

    Google Scholar 

  • McKown AD, Moncalvo J-M, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4-photosynthesis evolution. Amer J Bot 92:1911–1928

    Article  CAS  Google Scholar 

  • McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Amer J Bot 94:382–399

    Article  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, Berlin

    Google Scholar 

  • Morton AG (1981) History of botanical science. An account of the development of botany from ancient times to the present day. Academic, London

    Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1994) Size-dependent variations in plant growth rates and the “3/4-power rule”. Amer J Bot 81:134–144

    Article  Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans—a biomechanical perspective. Ann Bot 85:411–438

    Article  Google Scholar 

  • Niklas KJ (2006) A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol 171:27–40

    Article  PubMed  Google Scholar 

  • Niklas KJ (2007) Sizing up life and death. Proc Natl Acad Sci USA 104:15589–15590

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ (2009) Functional adaptation and phenotypic plasticity at the cellular and the whole plant level. J Biosci (in press)

  • Niklas KJ, Enquist BJ (2001) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA 98:2922–2927

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695

    Article  Google Scholar 

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Lett 8:636–642

    Article  Google Scholar 

  • Osborne DJ (1984) Ethylene and plants of aquatic and semi-aquatic environments: a review. Plant Growth Regul 2:167–185

    Article  CAS  Google Scholar 

  • Pfeffer W (1897/1904) Pflanzenphysiologie. Ein Handbuch der Lehre vom Stoffwechsel und Kraftwechsel in der Pflanze. Band I: Stoffwechsel, Band II: Kraftwechsel. 2. Auflage. Verlag Wilhelm Engelmann, Leipzig

  • Price CA, Enquist BJ (2007) Scaling mass and morphology in leaves: an extension of the WBE model. Ecology 88:1132–1141

    Article  PubMed  Google Scholar 

  • Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:959–963

    Article  PubMed  Google Scholar 

  • Sarkar S (2004) From the Reaktionsnorm to the evolution of adaptive plasticity: a historical sketch, 1909–1999. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: function and conceptual approaches. Oxford University Press, Oxford, pp 10–30

    Google Scholar 

  • Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29

    Article  PubMed  CAS  Google Scholar 

  • Scherp P, Grotha R, Kutschera U (2001) Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant Cell Rep 20:143–149

    Article  CAS  Google Scholar 

  • Schlichting CD, Pigliucci M (1993) Control of phenotypic plasticity via regulatory genes. Amer Nat 142:366–370

    Article  CAS  Google Scholar 

  • Schopfer P (1986) Photomorphogenesis. In: Wilkins MB (ed) Advanced plant physiology. Longman Scientific & Technical, Essex, pp 380–407

    Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Amer J Bot 93:1415–1425

    Article  Google Scholar 

  • Schopfer P (2008) Is the loss of stability theory a realistic concept for stress relaxation-mediated cell wall expansion during plant growth? Plant Physiol 147:935–936

    Article  PubMed  CAS  Google Scholar 

  • Sprengel C (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Friedrich Viehweg, Berlin

    Google Scholar 

  • Smith H (1990) Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant, Cell, Environm 13:585–594

    Article  CAS  Google Scholar 

  • Sultan SE, Bazzaz FA (1993) Phenotypic plasticity in Polygonum persicaria. III. The evolution of ecological breadth for nutrient environment. Evolution 47:1050–1071

    Article  Google Scholar 

  • Telewski F (2006) A unified hypothesis for mechanoperception in plants. Amer J Bot 93:1466–1476

    Article  Google Scholar 

  • Turgeon R, Medville R, Nixon K (2001) The evolution of minor vein phloem and phloem loading. Amer J Bot 88:1331–1339

    Article  Google Scholar 

  • Van Tienderen PH (1997) Generalists, specialists, and the evolution of phenotypic plasticity in sympatric populations of distinct species. Evolution 51:1374–1380

    Article  Google Scholar 

  • Weiner J (1985) Size hierarchies in experimental populations of annual plants. Ecology 66:743–752

    Article  Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25: 1–116

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Tends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank four referees for helpful comments on an earlier version of the manuscript and the Alexander von Humboldt-Stiftung (Bonn, Germany) for financial support (AvH-fellowships 2008/2009, Stanford, California, USA to U. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kutschera.

Additional information

This contribution is part of the Special Issue “Beyond the Origin: Charles Darwin and modern biology” (Guest editor: U. Kutschera; see Kutschera 2009a)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutschera, U., Niklas, K.J. Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96, 1339–1354 (2009). https://doi.org/10.1007/s00114-009-0604-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0604-z

Keywords

Navigation