Skip to main content
Log in

Does the mechanism of sex determination constrain the potential for sex manipulation? A test in geckos with contrasting sex-determining systems

  • Original Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The concentration of yolk steroids was suggested to influence offspring gender in oviparous animals subject to both temperature-dependent sex determination (TSD) and genotypic sex determination (GSD). However, the proposed mechanisms of steroid effects are thought to differ between TSD and GSD: a direct effect of oestrogens on gonad feminisation in TSD species vs a differential induction of male-producing or female-producing gametes in GSD species. Geckos offer an ideal opportunity for testing these suggested mechanisms. Closely related gecko species differ in their modes of sex determination. They lay clutches of two synchronously formed eggs; both eggs share equal steroid levels. If identical hormonal composition and environment during vitellogenesis, gravidity and incubation determine the sex of the progeny, siblings should share the same gender in both TSD and GSD geckos. We found strong support for this prediction in a TSD gecko species. Among clutches that were incubated at the temperature that produced both sexes, there were no clutches with siblings of the opposite sex. On the other hand, about half of the clutches yielded siblings of the opposite sex in four GSD species. These results suggest that sex-determining systems constrain the ability of the female to produce single-sex siblings and, hence, it seems that the GSD mechanism constrains the opportunities for sex ratio manipulation in geckos via yolk steroid manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins-Regan E, Ottinger MA, Park J (1995) Maternal transfer of estradion to yolk alters sexual differentiation of avian offspring. J Exp Zool 271:466–470

    Article  CAS  Google Scholar 

  • Blumberg MS, Lewis SJ, Sokoloff G (2002) Incubation temperature modulates post-hatching thermoregulatory behavior in the Madagascar ground gecko Paroedura pictus. J Exp Biol 205:2777–2784

    PubMed  Google Scholar 

  • Bowden RM, Ewert MA, Nelson CE (2000) Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proc R Soc Lond B 267:1745–1749

    Article  CAS  Google Scholar 

  • Bragg WK, Fawcett TB, Bragg TB, Viets BE (2000) Nest-site selection in two eublepharid gecko species with temperature-dependent sex determination and one with genotypic sex determination. Biol J Linn Soc 69:319–332

    Article  Google Scholar 

  • Bull JJ, Gutzke WHN, Bulmer MG (1988) Nest choice in a captive lizard with temperature-dependent sex determination. J Evol Biol 2:177–184

    Article  Google Scholar 

  • Conley AJ, Elf PK, Corbin CJ, Dubowsky S, Fivizzani A, Lang JW (1997) Yolk steroid decline during sexual differentiation in the alligator. Gen Comp Endocrinol 107:191–200

    Article  PubMed  CAS  Google Scholar 

  • Conover DO (1984) Adaptive significance of temperature-dependent sex determination in a fish. Am Nat 123:297–313

    Article  Google Scholar 

  • Davis LM, Glenn TC, Elsey RM, Dessauer HC, Sawyer RH (2001) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Dodd KL, Murdock C, Wibbels T (2006) Interclutch variation in sex ratios produced at pivotal temperature in the red-eared slider, a turtle with temperature-dependent sex determination. J Herpetol 40:544–549

    Article  Google Scholar 

  • Elf PK (2003) Yolk steroid hormones and sex determination in reptiles with TSD. Gen Comp Endocrinol 132:349–355

    Article  PubMed  CAS  Google Scholar 

  • Elf PK (2004) Yolk steroid hormones and their possible roles in TSD species. In: Valenzuela N, Lance V (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 111–118

    Google Scholar 

  • Elf PK, Lang JW, Fivizzani AJ (2002) Yolk hormone levels in the eggs of snapping turtles and painted turtles. Gen Comp Endocrinol 127:26–33

    Article  PubMed  CAS  Google Scholar 

  • Ewen JG, Cassey P, Moller AP (2004) Facultative primary sex ratio variation: a lack of evidence in birds? Proc R Soc Lond B 271:1277–1282

    Article  Google Scholar 

  • Ewert MA, Nelson CE (2003) Metabolic heating of embryos and sex determination in the american alligator, Alligator mississippiensis. J Thermal Biol 28:159–165

    Article  Google Scholar 

  • Janes DE, Wayne ML (2006) Evidence for a genotype x environment interaction in sex-determining response to incubation temperature in the leopard gecko, Eublepharis macularius. Herpetologica 62:56–62

    Article  Google Scholar 

  • Janzen FJ, Krenz JG (2004) Phylogenetics: Which was first, TSD or GSD? In: Valenzuela N, Lance V (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 121–130

    Google Scholar 

  • Janzen FJ, Wilson ME, Tucker JK, Ford SP (2002) Experimental manipulation of steroid concentrations in circulation and in egg yolks of turtles. J Exp Zool 293:58–66

    Article  PubMed  CAS  Google Scholar 

  • Kluge AG (1987) Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Miscellaneous Publications of the Museum of Zoology, University of Michigan 173:1–54

  • Krackow S (2002) Why parental sex ratio manipulation is rare in higher vertebrates. Ethology 108:1041–1056

    Article  Google Scholar 

  • Kratochvíl L, Frynta D (2002) Body size, male combat and the evolution of sexual dimorphism in eublepharid geckos (Squamata: Eublepharidae). Biol J Linn Soc 76:303–314

    Article  Google Scholar 

  • Kratochvíl L, Frynta D (2006a) Body size effect on egg size in eublepharid geckos (Squamata: Eublepharidae), lizards with invariant clutch size: the negative allometry for egg size in ectotherms is not universal. Biol J Linn Soc 88:527–532

    Article  Google Scholar 

  • Kratochvíl L, Frynta D (2006b). Egg shape and size allometry in geckos (Squamata: Gekkota), lizards with contrasting eggshell structure: why to lay spherical eggs? J Zool Syst Evol Res 44:217–222

    Article  Google Scholar 

  • Kratochvíl L, Kubička L, Landová E (2006). Yolk hormone levels in the synchronously developing eggs of Paroedura picta, a gecko with genetic sex determination. Can J Zool 84:1683–1687

    Article  CAS  Google Scholar 

  • Kratochvíl L, Kubička L (2007). Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Funct Ecol 21:171–177

    Article  Google Scholar 

  • Lang JW, Andrews HV (1994) Temperature-dependent sex determination in crocodilians. J Exp Zool 270:28–44

    Article  Google Scholar 

  • Le Galliard JF, Fitze PS, Cote J, Massot M, Clobert J (2005) Female common lizards (Lacerta vivipara) do not adjust their sex-biased investment in relation to the adult sex ratio. J Evol Biol 18:1455–1463

    Article  PubMed  Google Scholar 

  • Lovern MB, Wade J (2003a) Yolk testosterone varies with sex in eggs of the lizard, Anolis carolinensis. J Exp Zool 295A:206–210

    Article  CAS  Google Scholar 

  • Lovern MB, Wade J (2003b) Sex steroids in green anoles (Anolis carolinensis): uncoupled maternal plasma and yolking follicle concentrations, potential embryonic steroidogenesis, and evolutionary implications. Gen Comp Endocrinol 134:109–115

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1990) Patterns and processes of sex chromosome evolution in Gekkonid lizards (Sauria: Reptilia). In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhauser, Berlin, pp 205–219

    Google Scholar 

  • Pearse DE, Janzen FJ, Avise JC (2002) Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav Ecol Sociobiol 51:164–171

    Article  Google Scholar 

  • Petrie M, Schwabl H, Brande-Lavridsen N, Burke T (2001) Sex differences in avian yolk hormone levels. Nature 412:498

    Article  PubMed  CAS  Google Scholar 

  • Pieau C, Dorizzi M (2004) Oestrogens and temperature-dependent sex determination in reptiles: all is in gonads. J Endocrinol 181:367–377

    Article  PubMed  CAS  Google Scholar 

  • Pike TW, Petrie M (2003) Potential mechanisms of avian sex manipulation. Biol Rev 78:553–574

    Article  PubMed  Google Scholar 

  • Pilz KM, Adkins-Regan E, Schwabl H (2005) No sex difference in yolk steroid concentrations of avian eggs at laying. Biol Lett 1:318–321

    Article  PubMed  Google Scholar 

  • Radder R, Ali S, Shine R (2007) Offspring sex is not related to maternal allocation of yolk steroids in the lizard Bassiana duperreyi (Scincidae). Physiol Biochem Zool 80:220–227

    Article  PubMed  CAS  Google Scholar 

  • Rhen T, Lang JW (1998) Among-family variation for environmental sex determination in reptiles. Evolution 52:1514–1520

    Article  Google Scholar 

  • Rhen T, Sakata JT, Zeller M, Crews D (2000) Sex steroid levels across the reproductive cycle of female leopard geckos, Eublepharis macularius, from different incubation temperatures. Gen Comp Endocrinol 118:322–331

    Article  PubMed  CAS  Google Scholar 

  • Rhen T, Crews D, Fivizzani A, Elf P (2006) Reproductive tradeoffs and yolk steroids in female leopard geckos, Eublepharis macularius. J Evol Biol 19:1819–1829

    Article  PubMed  CAS  Google Scholar 

  • Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays 26:639–645

    Article  PubMed  Google Scholar 

  • Silk JB, Willoughby E, Brown GR (2005) Maternal rank and local resource competition do not predict birth sex ratios in wild baboons. Proc R Soc Lond B 272:859–864

    Article  Google Scholar 

  • St. Juliana JR, Bowden RM, Janzen FJ (2004) The impact of behavioral and physiological maternal efects on offspring sex ratio in the common snapping turtle, Chelydra serpentina. Behav Ecol Sociobiol 56:270–278

    Article  Google Scholar 

  • Trivers RT, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela N, Adams DC, Janzen FJ (2003) Pattern does not equal process: Exactly when is sex environmentally determined? Am Nat 161:676–683

    Article  PubMed  Google Scholar 

  • Viets BE, Tousignant A, Ewert MC, Nelson CE, Crews D (1993) Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J Exp Zool 265:679–683

    Article  PubMed  CAS  Google Scholar 

  • Viets BE, Ewert MA, Talent LG, Nelson CE (1994) Sex determining mechanisms in squamate reptiles. J Exp Zool 270:45–56

    Article  Google Scholar 

  • Warner DA, Shine R (2005) The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Evolution 59:2209–2221

    PubMed  Google Scholar 

  • West SA, Sheldon BC (2002) Constraints in the evolution of sex ratio adjustment. Science 295:1685–1688

    Article  PubMed  CAS  Google Scholar 

  • West SA, Shuker DM, Sheldon BC (2005) Sex-ratio adjustment when relatives interact: A test of constraints on adaptation. Evolution 59:1211–1228

    PubMed  Google Scholar 

  • Williams TD, Ames CE, Kiparissis Y, Wynne-Edwards KE (2005) Laying-sequence-specific variation in yolk oestrogen levels, and relationship to plasma oestrogen in female zebra finches (Taeniopygia guttata). Proc R Soc Lond B 272:173–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pokorná, Z. Starostová, J. Červenka, Š. Gorički, F. J. Janzen, H. John-Alder and three anonymous referees for the critical reading of the manuscript and the constructive comments. J. Břehová, H. Jirků, M. Pokorná and K. Zelená assisted in animal care. This research was supported by GAAV project no. KJB611302; institutional support was provided by MSMT, project no. 0021620828. All work was performed in accordance with the regulations of the Institutional Animal Care and Use Committee of the Charles University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Kratochvíl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratochvíl, L., Kubička, L. & Landová, E. Does the mechanism of sex determination constrain the potential for sex manipulation? A test in geckos with contrasting sex-determining systems. Naturwissenschaften 95, 209–215 (2008). https://doi.org/10.1007/s00114-007-0317-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0317-0

Keywords

Navigation