Skip to main content
Log in

Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Modern carbonate globules, located in cracks of submerged volcanic rocks and in calcareous pinnacles in alkaline (sodic) Lake Van, Turkey, appear to be analogues for the ~3.9 billion-year-old carbonate globules in Martian meteorite ALH84001. These terrestrial globules have similar diameters and are chemically and mineralogically zoned. Furthermore, they display surface and etching structures similar to those described from ALH84001, which were interpreted as fossilized microbial forms. These terrestrial carbonates formed at low temperatures where Ca-rich groundwaters enter the lake. Chemical, mineralogical, microbiological, and biomolecular methods were used in an attempt to decipher the process responsible for the genesis of these structures. Although the exact mode of formation of Lake Van carbonates remains an enigma, their similarity to the Martian globules indicates that the ALH84001 carbonates may have formed in similar setting on ancient Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. A
Fig. 3. A

References

  • Bogard DD, Garrison DLH (1998) Relative abundance of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochim Cosmochim Acta 62:1829–1835

    Article  CAS  Google Scholar 

  • Bogard DD, Garrison DLH (1999) Argon-39-argon 40 "ages" and trapped argon in Martian shergotites, chassigny, and Allan Hills 84001. Meteorit Planet Sci 34:451–473

    CAS  Google Scholar 

  • Cabrol N, Wynn-Williams DD, Crawford DA, Grin EA (2001) Recent aqueous environments in Martian impact craters: an astrobiological perspective. Icarus 154:98–112

    Article  CAS  Google Scholar 

  • Carr MH (1996a) Water erosion on Mars and its biologic implications. Endeavour 20:56–60

    Article  CAS  PubMed  Google Scholar 

  • Carr MH (1996b) Water on early Mars. Ciba Found Symp 202:249–265

    CAS  PubMed  Google Scholar 

  • Cölfen H, Qi L (2001) A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem Eur J 7:106–116

    Article  Google Scholar 

  • Eiler JM, Valley JW, Graham CM, Fournelle J (2002) Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis. Geochim Cosmochim Acta 66:1285–1303

    Article  CAS  Google Scholar 

  • Farmer JD, Des Marais DJ (1999) Exploring for a record of ancient Martian life. J Geophys Res 104:26977–26995

    Article  PubMed  Google Scholar 

  • Folk RL (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sedim Petrol 63:990–999

    Google Scholar 

  • Folk RL, Taylor LA (2002) Nannobacterial alteration of pyroxenes in martian meteorite Allan Hills 84001. Meteorit Planet Sci 37:1057–1069

    CAS  Google Scholar 

  • Gibson EK, McKay DS, Thomas-Keprta KL, Wentworth, SJ, Westall F, Steele A, Romanek CS, Bell MS, Toporski J (2001) Life on Mars: evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty. Prec Res 106:15–34

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J (1997) A terrestrial model for an alkaline martian hydrosphere. Planet Space Sci 45:1493–1499

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 394:605–608

    Google Scholar 

  • Kirkland BL, Lynch FL, Rahnis MA, Folk RL, Molineaux IJ, McLean RJC (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27:347–350

    Article  Google Scholar 

  • Kirschvink JL, Maine AT, Vali H (1997) Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH 84001. Science 275:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • MacKay CP, Nedell SS (1988) Are there carbonate deposits in Vallis Marineris Mars? Icarus 73:142–148

    Article  PubMed  Google Scholar 

  • Malin MC, Carr MH (1999) Groundwater formation of martian valleys. Nature 397:560–561

    Article  PubMed  Google Scholar 

  • Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    CAS  PubMed  Google Scholar 

  • Maniloff J (1997) Nannobacteria: size limits and evidence. Science 276:1776

    CAS  Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chellier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930

    CAS  PubMed  Google Scholar 

  • McSween HY Jr, Harvey RP (1998) An evaporation model for formation of carbonates in the ALH84001 martian meteorite. Int Geol Rev 40:774–783

    Google Scholar 

  • Mittlefehldt DW (1994) ALH84001, a cumulate orthopyroxenite member of the SNC meteorite group. Meteoritics 29:214–221

    CAS  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  CAS  PubMed  Google Scholar 

  • Southam G, Donald R (1999) A structural comparison of bacterial vs. 'nanobacteria' and nanofossils. Earth-Science Rev 48:251–264

    Article  CAS  Google Scholar 

  • Thomas-Keprta, KL, Clemett SJ, Bazylinski DA, Kirschvink, JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  CAS  PubMed  Google Scholar 

  • Treiman AH (1998) The history of ALH84001 revised: multiple shock events. Meteorit Planet Sci 33:753–764

    CAS  PubMed  Google Scholar 

  • Treiman AH (1999) Martian life 'still kicking' in meteorite ALH84001. Eos 80:205–208

    Google Scholar 

  • Treiman AH, Amundsen HEF, Blake DF, Bunch T (2002) Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway). Earth Planet Sci Lett 204:323–333

    Article  CAS  Google Scholar 

  • Valley JW, Eiler JM, Graham CM, Gibson EK Jr, Romanek CS, Stolper EM (1997) Low-temperature carbonate concretions in the martian meteorite ALH 84001: evidence from stable isotopes and mineralogy. Science 275:1633–1638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Greeley (Tempe, Arizona), W. Altermann (Munich), and the three anonymous reviewers for constructive criticisms and valuable suggestions. Thanks are also expressed to P. Garcia-Lopez (Université P. & M. Curie, Paris) for her efforts in cloning DNA from Lake Van globules. The laboratory and field assistance of C. Kulicki and M. Kuzniarski (Warsaw), G. Landmann (Darmstadt), A. Lipp (Hamburg), and A. Reimer (Göttingen) is greatly appreciated. This study was supported by the Foundation for Polish Science (Warsaw) and the Deutsche Forschungsgemeinschaft (Bonn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Kazmierczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazmierczak, J., Kempe, S. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Naturwissenschaften 90, 167–172 (2003). https://doi.org/10.1007/s00114-003-0411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0411-x

Keywords

Navigation