Skip to main content

Advertisement

Log in

Sustainable chemistry: starting points and prospects

  • Review Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

We review here the concept of sustainable chemistry (SC), which is still in its early development. One important element of SC is commonly defined as chemical research aiming at the optimization of chemical processes and products with respect to energy and material consumption, inherent safety, toxicity, environmental degradability, and so on. An increasing number of assessment systems containing quantitative indicators for these aspects are currently being developed. In addition, however, SC should also address the societal aspect of sustainability. With respect to scientific research, the societal aspect is defined here by two requirements: (1) the assumptions, objectives and implications of chemical research and its technical application should be made more transparent to various societal actors; (2) uncertainty and ignorance should be treated more explicitly in the course of scientific research. Meeting these requirements is necessary in order to lift the division between the allegedly disinterested and non-normative scientific research and the value-laden sphere of societal needs, preferences and decision-making situations. This, in turn, is understood here as a contribution to a more sustainable scientific practice. We illustrate the two elements of SC—optimization of products and processes as well as including the societal aspect—with the examples of environmental chemistry, green chemistry and the environmental assessment of chemical products. While considerable progress has been made in these fields, the societal aspect of SC remains to be recognized more fully in all branches of chemical research. One prerequisite for this is the inclusion of SC into chemical education from the very beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  • Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution. Chapman and Hall, London

  • Anastas PT, Farris CA (eds) (1994) Benign by design: alternative synthetic design for pollution prevention. (ACS symposium series no. 577) American Chemical Society, Washington, D.C.

    Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Anastas PT, Williamson TC (eds) (1996) Green chemistry: designing chemistry for the environment. (ACS symposium series no. 626) American Chemical Society, Washington, D.C.

    Google Scholar 

  • Anastas, PT, Williamson TC (eds) (1998) Green chemistry: frontiers in benign chemical syntheses and processes. Oxford University Press, Oxford

    Google Scholar 

  • Bennett DH, Scheringer M, McKone TE, Hungerbühler K (2001) Predicting long-range transport: a systematic evaluation of two multimedia transport models. Environ Sci Technol 35:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Rüsch gen. Klaas M, Schäfer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable resources for the chemical industry. Angew Chem Int Ed 39:2206–2224

    Article  CAS  Google Scholar 

  • Böhme G (1993) Das Ende des Baconschen Zeitalters. Suhrkamp, Frankfurt

  • Böschen S (2000) Risikogenese. Prozesse gesellschaftlicher Gefahrenwahrnehmung: FCKW, Dioxin, DDT und Ökologische Chemie. Leske und Budrich, Opladen

    Google Scholar 

  • Böschen S, Lenoir D (2001) Neue Horizonte für die Chemie. Was kann aus dem Leitbild "Nachhaltige Entwicklung" gelernt werden? UWSF Z Umweltchem Ökotox 13:69–74

    Google Scholar 

  • Burke M (2000) Assessing the environmental health of Europe. Environ Sci Technol 34:76A–80A

    CAS  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin, Boston

  • Christ C (ed) (1999) Production-integrated environmental protection and waste management in the chemical industry. Wiley-VCH, Weinheim

  • Collins T (2001) Toward sustainable chemistry. Science 291:48–49

    Article  CAS  PubMed  Google Scholar 

  • EEA (European Environment Agency) (1998) Chemicals in the environment: low doses, high stakes? The EEA and UNEP annual message 2 on the state of Europe's environment. European Environment Agency, Copenhagen

    Google Scholar 

  • Eissen M, Metzger JO (2002) Environmental performance metrics for daily use in synthetic chemistry. Chem Eur J 8:3581–3585

    Google Scholar 

  • Eissen M, Metzger JO, Schmidt E, Schneidewind U (2002) 10 years after "Rio"—concepts of chemistry towards sustainable development. Angew Chem Int Ed 41:414–436

    Article  CAS  Google Scholar 

  • Erickson BE (2002) Analyzing the ignored environmental contaminants. Environ Sci Technol 36:140A–145A

    Google Scholar 

  • Fenner K, Scheringer M, Hungerbühler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34:3809–3817

    Article  CAS  Google Scholar 

  • Fischer H (1992) Praktikum in Allgemeiner Chemie. I. Ein umweltschonendes Programm für Studienanfänger mit Versuchen zur Chemikalien-Rückgewinnung. VCH, Weinheim

  • FWWP (Forum für Wirtschaft, Wissenschaft und Politik) (ed) (1970) 1. Internationales Symposium "Aspekte der chemischen und toxikologischen Beschaffenheit der Umwelt" (veranstaltet vom Institut für Ökologische Chemie der GSF mbH, München, Juli 1969) Bonn

  • Gleich A von (1997) Ökologische Kriterien der Technik- und Stoffbewertung. In: Westphalen R (ed) Technikfolgenabschätzung als politische Aufgabe, 3rd edn. Oldenbourg, München/Wien, pp 499–570

  • Griesbeck A, Kramer W, Lex J (2001) Diastereo- and enantioselective synthesis of pyrrolo[1,4] benzodiazepins by decarboxilating photocyclization. Angew Chem Int Ed 40:577–579

    Article  CAS  Google Scholar 

  • Held, M (ed) (1988) Chemiepolitik. Gespräch über eine Kontroverse. Verlag Chemie, Weinheim

  • Held, M (ed) (1991) Leitbilder der Chemiepolitik. Stoffökologische Perspektiven der Industriegesellschaft. Campus, Frankfurt

  • Hoffman R (1997) Sein und Schein. Reflexionen über die Chemie. Wiley-VCH, Weinheim

  • Hoffmann-Riem H, Wynne B (2002) In risk assessment, one has to admit ignorance. Nature 416:123

    Article  CAS  Google Scholar 

  • Hungerbühler K, Ranke J, Mettier T (1999) Chemische Produkte und Prozesse. Grundkonzepte zum umweltorientierten Design. Springer, Berlin Heidelberg New York

  • Jaeger J (2000) Vom "ökologischen Risiko" zur "Umweltgefährdung": Einige kritische Gedanken zum wirkungsorientierten Risikobegriff. In: Breckling B, Müller F (eds) Der Ökologische Risikobegriff. Peter Lang, Frankfurt, pp 203–216

  • Jödicke G, Zenklusen O, Weidenhaupt A, Hungerbühler K (1999) Developing environmentally sound processes in the chemical industry: a case study on pharmaceutical intermediates. J Clean Prod 7:159–166

    Article  Google Scholar 

  • Karafyllis N (2000) Nachwachsende Rohstoffe: Technikbewertung zwischen den Leitbildern Wachstum und Nachhaltigkeit. Leske und Budrich, Opladen

    Google Scholar 

  • Klöpffer W (1994) Environmental hazard assessment of chemicals and products. Part II. Persistence and degradability of organic chemicals. Environ Sci Pollut Res 1:108–116

    Google Scholar 

  • König B, Bahadir M, Braig C, Hopf H, Jastorff B, Kreisel G, Lenoir D, Metzger J, Ondruschka B, Parlar H (2002) Sustainable chemistry in education, research and production: an organic teaching course for the new millennium. http://www.oc-praktikum.de

  • Kränz O (1973) Der Chemiker in den Gründerjahren. In: Schmauderer E (ed) Der Chemiker im Wandel der Zeiten: Skizzen zur geschichtlichen Entwicklung eines Berufsbildes. Verlag Chemie, Weinheim, pp 259–283

    Google Scholar 

  • Meadows DH, Meadows DL, Randers J (1992) Beyond the limits. Chelsea Green, Post Mills, Vt.

  • Meinwald J, Eisner T (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, D.C., pp 1–85

    Google Scholar 

  • Metzger J (1998) Solvent-free organic synthesis. Angew Chem Int Ed 37:2975–2978

    Article  CAS  Google Scholar 

  • Nüchter M, Ondruschka G, Jungwickel A, Müller U (2000) Organic processes initiated by non-classical energy sources. J Phys Org Chem 13:579–586

    Article  Google Scholar 

  • Primas H (1988) Kann Chemie auf Physik reduziert werden? Chem Unserer Zeit 19:109–119, 160–166

    Google Scholar 

  • Rieger P-G, Knackmuss H-J (1999) Benign by design: new textile auxiliaries. In: Proceedings of the OECD workshop on sustainable chemistry. (OECD environmental health and safety publications 10) OECD Environment Directorate, Paris, pp 189–192

  • Rieger P-G, Meier H-M, Gerle M, Vogt U, Groth T, Knackmuss H-J (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    Article  CAS  PubMed  Google Scholar 

  • Roberts SM (ed) (2001) Catalysts for fine chemical syntheses. Wiley-VCH, Weinheim

  • Scheringer M (2002) Persistence and spatial range of environmental chemicals. Wiley-VCH, Weinheim

  • Scheringer M, Berg M, Müller-Herold U (1994) Jenseits der Schadensfrage: Umweltschutz durch Gefährdungsbegrenzung. In: Berg M, et al (eds) Was ist ein Schaden? Zur normativen Dimension des Schadensbegriffes in der Risikowissenschaft. Verlag der Fachvereine (VdF), Zürich, pp 115–146

  • Scheringer M, Böschen S, Jaeger J (2001) Wozu Umweltforschung? Zum Spannungsverhältnis zwischen Forschungstraditionen und umweltpolitischen Leitbildern. Teil I. Das Beispiel Ökologische Chemie. GAIA 10:120–130

    Google Scholar 

  • Schildknecht H (1981) Irritant and defense substances of higher plants: a chemical herbarium. Angew Chem Int Ed 20:164–183

    Google Scholar 

  • Sheldon R (1994) Consider the environmental quotient. Chemtech 3:38–47

    Google Scholar 

  • Sheldon RA, Bekkum H van (eds) (2000) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim

  • Statens Offentliga Utredningar (Committee on New Guidelines on Chemical Policy) (2000) Summary of the report of the Swedish Committee on New Guidelines on Chemicals Policy. Statens Offentliga Utredningar, Stockholm

  • Steckhahn E, Arns T, Heineman WR, Hilt G, Hoormann D, Jörissen F, Kröner L, Lewall B, Pütter H (2001) Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43:63–74

    Article  PubMed  Google Scholar 

  • Thomas JM, Raja R, Sankar G, Johnson BFG, Lewis DW (2001) Solvent-free routes to clean technology. Chem Eur J 7:2972–2978

    Google Scholar 

  • Trost MB (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed 34:259–281

    CAS  Google Scholar 

  • Vallack HW, Bakker DJ, Brandt I, Broström-Lundén E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF (1998) Controlling persistent organic pollutants—what next? Environ Toxicol Pharmacol 6:143–175

    CAS  Google Scholar 

  • Wehling P (2001) Jenseits des Wissens? Wissenschaftliches Nichtwissen aus soziologischer Perspektive. Z Soziol 30:465–484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scheringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böschen, S., Lenoir, D. & Scheringer, M. Sustainable chemistry: starting points and prospects. Naturwissenschaften 90, 93–102 (2003). https://doi.org/10.1007/s00114-002-0397-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-002-0397-9

Keywords

Navigation