Skip to main content
Log in

Programmierung von kindlichem Übergewicht durch perinatale Überflusssituation

Programming of childhood overweight due to perinatal overnutrition

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Kindliches Übergewicht und Adipositas sind dringliche Gesundheitsprobleme mit weitreichenden Folgen bis ins Erwachsenenalter. Durch noch wenig verstandene Mechanismen, die als „fetale Programmierung“ bezeichnet werden, werden in den frühesten Lebensphasen bereits Krankheitsrisiken geprägt, die die kindliche Übergewichtsproblematik zu verstärken scheinen. Eine perikonzeptionelle maternale Adipositas, aber auch weitere perinatale Risikofaktoren, wie disproportional hohe Gewichtszunahme in der Schwangerschaft, Gestationsdiabetes oder eine rasche postnatale Gewichtszunahme des Kindes begünstigen das Risiko für die Entwicklung von Übergewicht und metabolischen Störungen im weiteren Leben. Tierexperimentelle Studien erlauben eine kontrollierte Untersuchung der Folgen einer perinatalen Überflusssituation für die Nachkommen. Verschiedene ungünstige perinatale Ernährungseinflüsse (vermehrte Zufuhr gesättigter Fettsäuren oder zusätzliche Erhöhung des Zuckeranteils in der maternalen Nahrung) haben Auswirkungen auf Körpergewicht und -fettanteil der Nachkommen. Sie verursachen außerdem Störungen der Funktion zahlreicher metabolisch aktiver Organe (Fettgewebe, Gehirn, Leber oder Muskel). Als zugrunde liegende Mechanismen für diesen prägenden Effekt werden proinflammatorische und epigenetische Prozesse diskutiert. Früh ansetzende vorgeburtliche Präventionskonzepte mit positiven Langzeiteffekten auf die Nachkommen stehen derzeit noch aus. Unmittelbar postnatal sind Stillförderung und die Vermeidung einer raschen übermäßigen Gewichtszunahme in den ersten beiden Lebensjahren wichtige Bausteine pädiatrisch-frühpräventiver Maßnahmen.

Abstract

Childhood overweight and obesity are urgent health problems with far-reaching consequences up into adulthood. Based on still poorly defined mechanisms, referred to as fetal programming, the risks of later life health problems are already determined during the earliest prenatal stages of life and appear to aggravate the overweight situation. Periconceptional maternal obesity and additional perinatal risk factors including a disproportionately high gestational weight gain, gestational diabetes and postnatal rapid weight gain in the first 2 years of life, promote the risk of developing overweight and associated metabolic disorders in childhood. Animal experimental studies provide the advantage of studying the consequences of maternal overnutrition for the offspring in a controlled setting. Adverse nutritional exposure, such as a high intake of saturated fatty acids or an additional increase of free sugar in the maternal diet exerts effects on weight status and body fat in the offspring and may result in dysfunction of metabolically active organs including adipose tissue, brain, liver and muscle. Potential underlying mechanisms may involve proinflammatory and epigenetic processes. Whether prenatal prevention concepts may have a beneficial long-term impact on later offspring health is currently unclear. Promotion of breastfeeding and avoidance of rapid postnatal weight gain in the first 2 years of life are essential components of the practicing pediatrician’s efforts for overweight prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literaturverzeichnis

  1. Bolton JL, Bilbo SD (2014) Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms. Dialogues Clin Neurosci 16:307–320

    PubMed Central  PubMed  Google Scholar 

  2. Brisbois TD, Farmer AP, Mccargar LJ (2012) Early markers of adult obesity: a review. Obes Rev 13:347–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chang GQ, Gaysinskaya V, Karatayev O et al (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28:12107–12119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dahlhoff M, Pfister S, Blutke A et al (2014) Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring. Biochim Biophys Acta 1842:304–317

    Article  CAS  PubMed  Google Scholar 

  5. De Onis M, Blossner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92:1257–1264

    Article  PubMed  Google Scholar 

  6. Dearden L, Ozanne SE (2015) Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol. doi:10.1016/j.yfrne.2015.08.001

    PubMed  Google Scholar 

  7. Demerath EW, Reed D, Choh AC et al (2009) Rapid postnatal weight gain and visceral adiposity in adulthood: the Fels Longitudinal Study. Obesity 17:2060–2066

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ensenauer R (2014) Gewichtszunahme/Adipositas. In: Rosenecker J (Hrsg) Pädiatrische Differenzialdiagnostik. Springer, Heidelberg, S 51–56

    Chapter  Google Scholar 

  9. Ensenauer R, Brandlhuber L, Burgmann M et al (2015) Obese nondiabetic pregnancies and high maternal glycated hemoglobin at delivery as an indicator of offspring and maternal postpartum risk: the prospective PEACHES mother-child cohort. Clin Chem 61(11):1381–1390. doi:10.1373/clinchem.2015.242206

    Article  PubMed  Google Scholar 

  10. Ensenauer R, Chmitorz A, Riedel C et al (2013) Effects of suboptimal or excessive gestational weight gain on childhood overweight and abdominal adiposity: results from a retrospective cohort study. Int J Obes 37:505–512

    Article  CAS  Google Scholar 

  11. Grube MM, Von Der Lippe E, Schlaud M et al (2015) Does breastfeeding help to reduce the risk of childhood overweight and obesity? A propensity score analysis of data from the KiGGS study. PloS One 10:e0122534

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hill B, Skouteris H, Fuller-Tyszkiewicz M (2013) Interventions designed to limit gestational weight gain: a systematic review of theory and meta-analysis of intervention components. Obes Rev 14:435–450

    Article  CAS  PubMed  Google Scholar 

  13. Hornell A, Lagstrom H, Lande B et al (2013) Breastfeeding, introduction of other foods and effects on health: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res. doi:10.3402/fnr.v57i0.21083

    Google Scholar 

  14. Institute of Medicine (2009) Weight Gain During Pregnancy: Reexamining the Guidelines. Committee to Reexamine IOM Pregnancy Weight Guidelines. National Research Council of the National Academies, Washington, DC

    Google Scholar 

  15. Kral JG, Biron S, Simard S et al (2006) Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 118:e1644–e1649

    Article  PubMed  Google Scholar 

  16. Kramer MS (1981) Do breast-feeding and delayed introduction of solid foods protect against subsequent obesity? J Pediatr 98:883–887

    Article  CAS  PubMed  Google Scholar 

  17. Kurth BM, Schaffrath Rosario A (2007) The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50:736–743

    Article  Google Scholar 

  18. Lane M, Zander-Fox DL, Robker RL et al (2015) Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol Metab 26:84–90

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Huang J, Li JS et al (2012) Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 56:900–907

    Article  CAS  PubMed  Google Scholar 

  20. Metzger BE, Lowe LP, Dyer AR et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358:1991–2002

    Article  PubMed  Google Scholar 

  21. Monteiro PO, Victora CG (2005) Rapid growth in infancy and childhood and obesity in later life-a systematic review. Obes Rev 6:143–154

    Article  CAS  PubMed  Google Scholar 

  22. Murabayashi N, Sugiyama T, Zhang L et al (2013) Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur J Obstet Gynecol Reprod Biol 169:39–44

    Article  CAS  PubMed  Google Scholar 

  23. Nehring I, Von Kries R, Ensenauer R (2013) Perinatale Determinanten. In: Wirth A, Hauner H (Hrsg) Adipositas: Ätiologie, Folgekrankheiten, Diagnostik, Therapie. Springer, Heidelberg, S 56–59

    Google Scholar 

  24. Nicholas LM, Morrison JL, Rattanatray L et al (2015) The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes doi:10.1038/ijo.2015.178

    Google Scholar 

  25. Nivoit P, Morens C, Van Assche FA et al (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52:1133–1142

    Article  CAS  PubMed  Google Scholar 

  26. Oken E, Levitan EB, Gillman MW (2008) Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond) 32(2):201–210. doi:10.1038/sj.ijo.0803760

    Article  CAS  Google Scholar 

  27. Ong KK, Ahmed ML, Emmett PM et al (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320:967–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Philipps LH, Santhakumaran S, Gale C et al (2011) The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia 54:1957–1966

    Article  CAS  PubMed  Google Scholar 

  29. Pirkola J, Pouta A, Bloigu A et al (2010) Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes Care 33:1115–1121

    Article  PubMed Central  PubMed  Google Scholar 

  30. Plagemann A (2004) “Fetal programming” and “functional teratogenesis”: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med 32:297–305

    Article  CAS  PubMed  Google Scholar 

  31. Riedel C, Von Kries R, Buyken AE et al (2014) Overweight in adolescence can be predicted at age 6 years: a CART analysis in German cohorts. PloS One 9:e93581

    Article  PubMed Central  PubMed  Google Scholar 

  32. Saben J, Lindsey F, Zhong Y et al (2014) Maternal obesity is associated with a lipotoxic placental environment. Placenta 35:171–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Schellong K, Schulz S, Harder T et al (2012) Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PloS One 7:e47776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tie HT, Xia YY, Zeng YS et al (2014) Risk of childhood overweight or obesity associated with excessive weight gain during pregnancy: a meta-analysis. Arch Gynecol Obstet 289:247–257

    Article  PubMed  Google Scholar 

  35. Vogt MC, Paeger L, Hess S et al (2014) Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156:495–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Volpato AM, Schultz A, Magalhaes-Da-Costa E et al (2012) Maternal high-fat diet programs for metabolic disturbances in offspring despite leptin sensitivity. Neuroendocrinology 96:272–284

    Article  CAS  PubMed  Google Scholar 

  37. Von Kries R, Koletzko B, Sauerwald T et al (1999) Breast feeding and obesity: cross sectional study. BMJ 319:147–150

    Article  Google Scholar 

  38. Waters E, De Silva-Sanigorski A, Hall BJ et al (2011) Interventions for preventing obesity in children. Cochrane Database Syst Rev doi:10.1002/14651858.CD001871.pub3

    PubMed  Google Scholar 

  39. Weber M, Grote V, Closa-Monasterolo R et al (2014) Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 99:1041–1051

    Article  CAS  PubMed  Google Scholar 

  40. Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114:e29–e36

    Article  PubMed  Google Scholar 

  41. Ensenauer R (2012) Globale Epidemie Adipositas. Beginnt kindliches Übergewicht im Mutterleib? Gyne 9:22–24. (Mediengruppe Oberfranken – Fachverlage GmbH und Co. KG)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ensenauer.

Ethics declarations

Interessenkonflikt

V. Brüll, E. Hucklenbruch-Rother und R. Ensenauer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Dötsch, Köln

F. Zepp, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brüll, V., Hucklenbruch-Rother, E. & Ensenauer, R. Programmierung von kindlichem Übergewicht durch perinatale Überflusssituation. Monatsschr Kinderheilkd 164, 99–105 (2016). https://doi.org/10.1007/s00112-015-0010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-015-0010-x

Schlüsselwörter

Keywords

Navigation