Skip to main content
Log in

The CRL4DCAF6 E3 ligase ubiquitinates CtBP1/2 to induce apoptotic signalling and promote intervertebral disc degeneration

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Inflammation and apoptosis are two important pathological causes of intervertebral disc degeneration (IDD). The crosstalk between these two biological processes during IDD pathogenesis remains elusive. Herein, we discovered that chronic inflammation induced apoptosis through a cullin–RING E3 ligase (CRL)-dependent mechanism. Two cullin proteins, CUL4A and 4B, recruited DNA damage-binding protein 1 (DDB1), RING-box protein 1 (RBX1) and DDB1- and CUL4-associated factor 6 (DCAF6) to assemble a CRL4DCAF6 E3 ligase in intervertebral discs (IVDs) derived from IDD patients. The CRL4DCAF6 E3 ligase ubiquitinated and degraded C-terminal-binding protein 1 and 2 (CtBP1/2), two homologues of transcriptional corepressors. The degradation of CtBP1/2 disassociated from the p300–forkhead box O3a (FOXO3a) complex, inducing the expression of B-cell lymphoma 2 (Bcl2)-binding component 3 (BBC3) and causing BBC3-dependent apoptosis. TSC01131, a small molecule that specifically targets CUL4–DDB1 interaction, could inhibit the ubiquitination of CtBP1/2 in vitro and in vivo, thereby decreasing the BBC3 expression level and preventing apoptosis signalling. Using a mouse chronic inflammation model, we found that chronic inflammation could accelerate the IDD process through a conserved CRL4DCAF6-mediated mechanism. The administration of TSC01131 to mice could significantly improve the outcome of IDD. Collectively, our results revealed that inflammation-dependent CRL4DCAF6 E3 ligase triggered apoptosis through the removal of CtBP-mediated transrepression. The blockage of the CRL4DCAF6 E3 ligase by TSC01131 may represent a new therapeutic strategy for IDD treatment.

Key messages

  • CUL4A and CUL4B recruited DDB1, RBX1 and DCAF6 to assemble a CRL4DCAF6 E3 ligase in human IDD biopsies.

  • The CRL4DCAF6 E3 ligase ubiquitinated and degraded CtBP1/2, causing BBC3-dependent apoptosis.

  • A small molecule TSC01131 that specifically targets CUL4–DDB1 interaction could inhibit the ubiquitination of CtBP1/2, improving the outcome of IDD in a mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data analysed during this study are included in this published article and its supplementary information files.

References

  1. Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S (2012) Diversity of intervertebral disc cells: phenotype and function. J Anat 221(6):480–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirza SK, White AA (1995) Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J Clin Laser Med Surg 13(3):131–142

    Article  CAS  PubMed  Google Scholar 

  3. Waxenbaum JA, Reddy V, Futterman B (2020) Anatomy, back, intervertebral discs. StatPearls

  4. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5(3):120–130

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang F, Zhao X, Shen H, Zhang C (2016) Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int J Mol Med 37(6):1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan AN, Jacobsen HE, Khan J, Filippi CG, Levine M, Lehman RA Jr et al (2017) Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann N Y Acad Sci 1410(1):68–84

    Article  PubMed  PubMed Central  Google Scholar 

  7. Molinos M, Almeida CR, Caldeira J, Cunha C, Goncalves RM, Barbosa MA (2015) Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 12(108):20150429

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hikisz P, Kilianska ZM (2012) PUMA, a critical mediator of cell death–one decade on from its discovery. Cell Mol Biol Lett 17(4):646–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21(3):182–187

    Article  CAS  PubMed  Google Scholar 

  11. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al (2006) FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 203(7):1657–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jang SM, Kang EJ, Kim JW, Kim CH, An JH, Choi KH (2013) Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor. TSA Biochem Biophys Res Commun 438(2):445–451

    Article  CAS  PubMed  Google Scholar 

  13. Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17(3):513–521

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Han Y, Deng C, Chen W, Jin L, Chen H et al (2019) Inflammation-dependent downregulation of miR-194-5p contributes to human intervertebral disc degeneration by targeting CUL4A and CUL4B. J Cell Physiol 234(11):19977–19989

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Sui J, Zhang F, Zhang C (2015) Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer 6(3):233–242

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fischer ES, Scrima A, Bohm K, Matsumoto S, Lingaraju GM, Faty M et al (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147(5):1024–1039

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Zhang W, Jiang K, Chen B, Wang K, Lao L et al (2018) MicroRNA-300 Regulates the Ubiquitination of PTEN through the CRL4B(DCAF13) E3 Ligase in Osteosarcoma Cells. Mol Ther Nucleic Acids 10:254–268

    Article  CAS  PubMed  Google Scholar 

  18. Chen Z, Wang K, Hou C, Jiang K, Chen B, Chen J et al (2017) CRL4B(DCAF11) E3 ligase targets p21 for degradation to control cell cycle progression in human osteosarcoma cells. Sci Rep 7(1):1175

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li B, Jia N, Kapur R, Chun KT (2006) Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood 107(11):4291–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE (2005) Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79(21):13434–13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Lu W, He H, Wu J, Zhang C, Gong H et al (2019) Inflammation-dependent overexpression of c-Myc enhances CRL4 DCAF4 E3 ligase activity and promotes ubiquitination of ST7 in colitis-associated cancer. J Pathol 248(4):464–475

    Article  CAS  PubMed  Google Scholar 

  22. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H et al (2018) Source of chronic inflammation in aging. Front Cardiovasc Med 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang K, Zhang C, Yu B, Chen B, Liu Z, Hou C et al (2017) Autophagic degradation of FOXO3a represses the expression of PUMA to block cell apoptosis in cisplatin-resistant osteosarcoma cells. Am J Cancer Res 7(7):1407–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9(2):213–224

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez-Moure J, Moore CA, Kim K, Karim A, Smith K, Barbosa Z et al (2018) Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Med 6:2050312118761674

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Uden S, Silva-Correia J, Oliveria JM, Reis RL (2017) Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res 21:22

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu PH, Kim HS, Jang IT (2020) Intervertebral disc diseases PART 2: a review of the current diagnostic and treatment strategies for intervertebral disc disease. Int J Mol Sci 21(6):2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from Shanghai “Rising Stars of Medical Talent” Youth Development Program–Youth Medical Talents-Specialist Program (2018) (Zhi Chen).

Author information

Authors and Affiliations

Authors

Contributions

ZC and HS designed the experiments and wrote the manuscript. TC and YH performed the major experiments and data analysis. ZL, QS and KW helped culture cells, generate knockdown cell lines and maintain mice.

Corresponding authors

Correspondence to Hongxing Shen or Zhi Chen.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were performed in accordance with a protocol (2018IDD029) reviewed and approved by the ethical board of Renji Hospital, Shanghai Jiao Tong University, Shanghai, China. All the participants signed consent forms reviewed and approved by the ethical board of Shanghai Jiao Tong University, Shanghai, China.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7968 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, C., Han, Y., Lv, Z. et al. The CRL4DCAF6 E3 ligase ubiquitinates CtBP1/2 to induce apoptotic signalling and promote intervertebral disc degeneration. J Mol Med 101, 171–181 (2023). https://doi.org/10.1007/s00109-022-02277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02277-1

Keywords

Navigation