Skip to main content

Advertisement

Log in

Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Toll-interacting protein (TOLLIP) is a ubiquitous intracellular adaptor protein involved in multiple intracellular signaling pathways. It plays a key role in mediating inflammatory intracellular responses, promoting autophagy, and enabling vacuole transport within the cell. TOLLIP is being increasingly recognized for its role in disease pathophysiology through involvement in these three primary pathways. Recent research also indicates that TOLLIP is involved in nuclear-cytoplasmic transfer, although this area requires further exploration. TOLLIP is involved in the pathophysiologic pathways associated with neurodegenerative diseases, pulmonary diseases, cardiovascular disease, inflammatory bowel disease, and malignancy. We postulate that TOLLIP plays an integral role in the disease pathophysiology of other conditions involved in vacuole trafficking and autophagy. We suggest that future research in this field should investigate the role of TOLLIP in the pathogenesis of these multiple conditions. This research has the potential to inform disease mechanisms and identify novel opportunities for therapeutic advances in multiple disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2(6):346–351

    CAS  PubMed  Google Scholar 

  2. Ito Y, Schaefer N, Sanchez A, Francisco D, Alam R, Martin RJ, Ledford JG, Stevenson C, Jiang D, Li L, Kraft M, Chu HW (2018) Toll-interacting protein, Tollip inhibits IL-13-mediated pulmonary eosinophilic inflammation in mice. J Innate Immun 10(2):106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Saha SS, Singh D, Raymond EL, Ganesan R, Caviness G, Grimaldi C, Woska JR Jr, Mennerich D, Brown SE, Mbow ML, Kao CC (2015) Signal transduction and intracellular trafficking by the interleukin 36 receptor. J Biol Chem 290(39):23997–24006

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang G, Ghosh S (2002) Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 277(9):7059–7065

    CAS  PubMed  Google Scholar 

  5. Zhu L, Wang L, Luo X, Zhang Y, Ding Q, Jiang X, Wang X, Pan Y, Chen Y (2012) Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-β signaling pathway. J Biol Chem 287(47):39653–39663

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Capelluto DG (2012) Tollip: a multitasking protein in innate immunity and protein trafficking. Microbes Infect 14(2):140–147

    CAS  PubMed  Google Scholar 

  7. Kowalski EJA, Li L (2017) Toll-interacting protein in resolving and non-resolving inflammation. Front Immunol 8:511

    PubMed  PubMed Central  Google Scholar 

  8. Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K (2004) Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 279(23):24435–24443

    CAS  PubMed  Google Scholar 

  9. Lu K, Psakhye I, Jentsch S (2014) Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158(3):549–563

    CAS  PubMed  Google Scholar 

  10. Katoh Y, Imakagura H, Futatsumori M, Nakayama K (2006) Recruitment of clathrin onto endosomes by the Tom1–Tollip complex. Biochem Biophys Res Commun 341(1):143–149

    CAS  PubMed  Google Scholar 

  11. Ankem G, Mitra S, Sun F, Moreno Anna C, Chutvirasakul B, Azurmendi Hugo F, Li L, Capelluto Daniel GS (2011) The C2 domain of Tollip, a toll-like receptor signalling regulator, exhibits broad preference for phosphoinositides. Biochem J 435(3):597–608

    CAS  PubMed  Google Scholar 

  12. Azurmendi HF, Mitra S, Ayala I, Li L, Finkielstein CV, Capelluto DG (2010) Backbone (1)H, (15)N, and (13)C resonance assignments and secondary structure of the Tollip CUE domain. Mol cells 30(6):581–585

    CAS  PubMed  Google Scholar 

  13. Baker B, Geng S, Chen K, Diao N, Yuan R, Xu X, Dougherty S, Stephenson C, Xiong H, Chu HW, Li L (2015) Alteration of lysosome fusion and low-grade inflammation mediated by super-low-dose endotoxin. J Biol Chem 290(10):6670–6678

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Opal SM, Huber CE (2002) Bench-to-bedside review: toll-like receptors and their role in septic shock. Crit Care 6(2):125–136

    PubMed  PubMed Central  Google Scholar 

  15. Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of toll-interacting protein and IL-1 receptor signaling molecules in toll-like receptor 2 signaling. J Immunol (Baltimore, Md : 1950) 167(2):987–994

    CAS  Google Scholar 

  16. Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD, Millar AB (2004) Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am J Respir Cell Mol Biol 31(2):241–245

    CAS  PubMed  Google Scholar 

  17. Copenhaver AM, Casson CN, Nguyen HT, Duda MM, Shin S (2015) IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis. Proc Natl Acad Sci U.S.A 112(24):7557

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee HJ, Chung KC (2012) PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation. J Neuroinflammation 9(1):271

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Didierlaurent A, Brissoni B, Velin D, Aebi N, Tardivel A, Kaslin E, Sirard JC, Angelov G, Tschopp J, Burns K (2006) Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol 26(3):735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K (2006) Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr Biol 16(22):2265–2270

    CAS  PubMed  Google Scholar 

  21. Pokatayev V, Yang K, Tu X, Dobbs N, Wu J, Kalb RG, Yan N (2020) Homeostatic regulation of STING protein at the resting state by stabilizer TOLLIP. Nat Immunol 21(2):158–167

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shah JA, Emery R, Lee B, Venkatasubramanian S, Simmons JD, Brown M, Hung CF, Prins JM, Verbon A, Hawn TR, Skerrett SJ (2019) TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia. Mucosal Immunol 12(6):1382–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rong Y, Liu M, Ma L, du W, Zhang H, Tian Y, Cao Z, Li Y, Ren H, Zhang C, Li L, Chen S, Xi J, Yu L (2012) Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol 14:924–934. https://www.nature.com/articles/ncb2557#supplementary-information. Accessed 24 May 2020

  24. Tooze SA, Abada A, Elazar Z (2014) Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb perspect Biol 6(5):a018358

    PubMed  PubMed Central  Google Scholar 

  25. Jongsma Marlieke LM, Berlin I, Wijdeven Ruud HM et al (2016) An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166(1):152–166

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryan TA, Phillips EO, Collier CL, Jb Robinson A, Routledge D, Wood RE, Assar EA, Tumbarello DA (2020) Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles. EMBO J 39(11):e102539-e102539

    Google Scholar 

  27. Ciarrocchi A, D'Angelo R, Cordiglieri C, Rispoli A, Santi S, Riccio M, Carone S, Mancia AL, Paci S, Cipollini E, Ambrosetti D, Melli M (2009) Tollip is a mediator of protein sumoylation. PloS one 4(2):e4404. https://doi.org/10.1371/journal.pone.0004404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toruń A, Szymańska E, Castanon I, Wolińska-Nizioł L, Bartosik A, Jastrzębski K, Miętkowska M, González-Gaitán M, Miaczynska M (2015) Endocytic adaptor protein Tollip inhibits canonical Wnt signaling. PloS one 10(6):e0130818. https://doi.org/10.1371/journal.pone.0130818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419

    Google Scholar 

  30. Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders-a review. Curr Neurol Neurosci Rep 17(3):25

    PubMed  Google Scholar 

  31. Humbert-Claude M, Duc D, Dwir D, Thieren L, Sandström von Tobel J, Begka C, Legueux F, Velin D, Maillard MH, Do KQ, Monnet-Tschudi F, Tenenbaum L (2016) Tollip, an early regulator of the acute inflammatory response in the substantia nigra. J Neuroinflammation 13(1):303

    PubMed  PubMed Central  Google Scholar 

  32. Li M, Feng B, Wang L, Guo S, Zhang P, Gong J, Zhang Y, Zheng A, Li H (2015) Tollip is a critical mediator of cerebral ischaemia–reperfusion injury. J Pathol 237(2):249–262

    CAS  PubMed  Google Scholar 

  33. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    CAS  PubMed  Google Scholar 

  34. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167

    PubMed  PubMed Central  Google Scholar 

  35. Chen K, Yuan R, Geng S, Zhang Y, Ran T, Kowalski E, Liu J, Li L (2017) Toll-interacting protein deficiency promotes neurodegeneration via impeding autophagy completion in high-fat diet-fed ApoE−/− mouse model. Brain Behav Immun 59:200–210

    CAS  PubMed  Google Scholar 

  36. Martini AC, Gomez-Arboledas A, Forner S et al (2019) Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proc Natl Acad of Sci U.S.A. 116(42):21198–21206

    CAS  Google Scholar 

  37. Makioka K, Yamazaki T, Takatama M, Ikeda M, Murayama S, Okamoto K, Ikeda Y (2016) Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer’s disease. J Neurol Sci 365:101–107

    CAS  PubMed  Google Scholar 

  38. Won YH, Lee M-Y, Choi Y-C, Ha Y, Kim H, Kim DY, Kim MS, Yu JH, Seo JH, Kim MG, Cho SR, Kang SW (2016) Elucidation of relevant neuroinflammation mechanisms using gene expression profiling in patients with amyotrophic lateral sclerosis. PloS one 11(11):e0165290–e0165290

    PubMed  PubMed Central  Google Scholar 

  39. Oguro A, Kubota H, Shimizu M, Ishiura S, Atomi Y (2011) Protective role of the ubiquitin binding protein Tollip against the toxicity of polyglutamine-expansion proteins. Neurosci Lett 503(3):234–239

    CAS  PubMed  Google Scholar 

  40. Doi H, Mitsui K, Kurosawa M, Machida Y, Kuroiwa Y, Nukina N (2004) Identification of ubiquitin-interacting proteins in purified polyglutamine aggregates. FEBS Lett 571(1-3):171–176

    CAS  PubMed  Google Scholar 

  41. Haenig C, Atias N, Taylor AK, Mazza A, Schaefer MH, Russ J, Riechers SP, Jain S, Coughlin M, Fontaine JF, Freibaum BD, Brusendorf L, Zenkner M, Porras P, Stroedicke M, Schnoegl S, Arnsburg K, Boeddrich A, Pigazzini L, Heutink P, Taylor JP, Kirstein J, Andrade-Navarro MA, Sharan R, Wanker EE (2020) Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep 32(7):108050

    CAS  PubMed  Google Scholar 

  42. Noth I, Zhang Y, Ma S-F, Flores C, Barber M, Huang Y, Broderick SM, Wade MS, Hysi P, Scuirba J, Richards TJ, Juan-Guardela BM, Vij R, Han MLK, Martinez FJ, Kossen K, Seiwert SD, Christie JD, Nicolae D, Kaminski N, Garcia JGN (2013) Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 1(4):309–317

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat M', Li X, Ng M, Braybrooke R, Molina-Molina M, Hobbs BD, Putman RK, Sakornsakolpat P, Booth HL, Fahy WA, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Whyte MKB, Zhang Y, Kaminski N, Adegunsoye A, Strek ME, Neighbors M, Sheng XR, Gudmundsson G, Gudnason V, Hatabu H, Lederer DJ, Manichaikul A, Newell JD Jr, O’Connor GT, Ortega VE, Xu H, Fingerlin TE, Bossé Y, Hao K, Joubert P, Nickle DC, Sin DD, Timens W, Furniss D, Morris AP, Zondervan KT, Hall IP, Sayers I, Tobin MD, Maher TM, Cho MH, Hunninghake GM, Schwartz DA, Yaspan BL, Molyneaux PL, Flores C, Noth I, Jenkins RG, Wain LV (2020) Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 201(5):564–574

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oldham JM, Ma S-F, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, Valenzi E, Witt L, Lee C, Vij R, Huang Y, Strek ME, Noth I, IPFnet Investigators (2015) TOLLIP, MUC5B, and the response to N-Acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 192(12):1475–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, Kim SE, Chen TY, Wang J, Yang X, Tabib T, Tan J, Guo B, Fung S, Zhao J, Sembrat J, Rojas M, Shiva S, Lafyatis R, St. Croix C, Alder JK, di YP, Kass DJ, Zhang Y (2020) Toll interacting protein protects bronchial epithelial cells from bleomycin-induced apoptosis. FASEB J 34:9884–9898

  46. Shah JA, Vary JC, Chau TT, Bang ND, Yen NT, Farrar JJ, Dunstan SJ, Hawn TR (2012) Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J Immunol (Baltimore, Md : 1950) 189(4):1737–1746

    CAS  Google Scholar 

  47. Wu S, Huang W, Wang D, Wang Y, Wang M, Zhang M, He J-Q (2018) Evaluation of TLR2, TLR4, and TOLLIP polymorphisms for their role in tuberculosis susceptibility. APMIS 126(6):501–508

    CAS  PubMed  Google Scholar 

  48. Wu S, Liu X, Chen L, Wang Y, Zhang M, Wang M, He JQ (2020) Polymorphisms of TLR2, TLR4 and TOLLIP and tuberculosis in two independent studies. Biosci Rep 40. https://doi.org/10.1042/bsr20193141

  49. Dakhama A, Al Mubarak R, Pavelka N, Voelker D, Seibold M, Ledford JG, Kraft M, Li L, Chu HW (2020) Tollip inhibits ST2 signaling in airway epithelial cells exposed to type 2 cytokines and rhinovirus. J Innate Immun 12(1):103–115

    CAS  PubMed  Google Scholar 

  50. Huang C, Jiang D, Francisco D, Berman R, Wu Q, Ledford JG, Moore CM, Ito Y, Stevenson C, Munson D, Li L, Kraft M, Chu HW (2016) Tollip SNP rs5743899 modulates human airway epithelial responses to rhinovirus infection. Clin Exp Allergy 46(12):1549–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu Y, Li T, Wang Y, Li J, Guo L, Wu M, Shan X, Que L, Ha T, Chen Q, Kelley J, Li Y (2009) Tollip attenuated the hypertrophic response of cardiomyocytes induced by IL-1beta. Front Biosci (Landmark Ed) 14:2747–2756

    CAS  Google Scholar 

  52. Liu Y, Jiang X-L, Liu Y, Jiang DS, Zhang Y, Zhang R, Chen Y, Yang Q, Zhang XD, Fan GC, Li H (2013) Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice. Cardiovasc Res 101(1):87–96

    PubMed  PubMed Central  Google Scholar 

  53. Wan N, Liu X, Zhang X-J, Zhao Y, Hu G, Wan F, Zhang R, Zhu X, Xia H, Li H (2015) Toll-interacting protein contributes to mortality following myocardial infarction through promoting inflammation and apoptosis. Br J Pharmacol 172(13):3383–3396

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhi H, Gong FH, Cheng WL, Zhu K, Chen L, Yao Y, Ye X, Zhu XY, Li H (2018) Tollip negatively regulates vascular smooth muscle cell–mediated neointima formation by suppressing Akt-dependent signaling. J Am Heart Assoc 7(12):e006851. https://doi.org/10.1161/JAHA.117.006851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma Y, Chiao YA, Clark R, Flynn ER, Yabluchanskiy A, Ghasemi O, Zouein F, Lindsey ML, Jin Y-F (2015) Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc Res 106(3):421–431

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen K, Yuan R, Zhang Y, Geng S, Li L (2017) Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. Journal of the American Heart Association 6(4):e004078. https://doi.org/10.1161/JAHA.116.004078

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shih DQ, Targan SR (2009) Insights into IBD pathogenesis. Curr Gastroenterol Rep 11(6):473–480

    PubMed  PubMed Central  Google Scholar 

  58. Sugi Y, Takahashi K, Kurihara K, Nakata K, Narabayashi H, Hamamoto Y, Suzuki M, Tsuda M, Hanazawa S, Hosono A, Kaminogawa S (2016) Post-transcriptional regulation of toll-interacting protein in the intestinal epithelium. PloS one 11(10):e0164858. https://doi.org/10.1371/journal.pone.0164858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandes P, MacSharry J, Darby T, Fanning A, Shanahan F, Houston A, Brint E (2016) Differential expression of key regulators of Toll-like receptors in ulcerative colitis and Crohn’s disease: a role for Tollip and peroxisome proliferator-activated receptor gamma? Clin Exp Immunol 183(3):358–368

    CAS  PubMed  Google Scholar 

  60. Diao N, Zhang Y, Chen K, Yuan R, Lee C, Geng S, Kowalski E, Guo W, Xiong H, Li M, Li L (2016) Deficiency in Toll-interacting protein (Tollip) skews inflamed yet incompetent innate leukocytes in vivo during DSS-induced septic colitis. Sci Rep 6:34672. https://www.nature.com/articles/srep34672#supplementary-information. Accessed 5 Jun 2020

  61. Maillard MH, Bega H, Uhlig HH, Barnich N, Grandjean T, Chamaillard M, Michetti P, Velin D (2014) Toll-interacting protein modulates colitis susceptibility in mice. Inflammatory bowel diseases 20(4):660–670

    PubMed  Google Scholar 

  62. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol (Baltimore, Md: 1950) 164(2):966–972

    CAS  Google Scholar 

  63. Verbeek RE, Siersema PD, Ten Kate FJ, Fluiter K, Souza RF, Vleggaar FP, Bus P, van Baal JWPM (2014) Toll-like receptor 4 activation in Barrett’s esophagus results in a strong increase in COX-2 expression. J Gastroenterol 49(7):1121–1134

    CAS  PubMed  Google Scholar 

  64. Pimentel-Nunes P, Gonçalves N, Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R Jr, Henrique R, Moreira-Dias L, Leite-Moreira AF, Dinis-Ribeiro M (2013) Helicobacter pylori induces increased expression of toll-like receptors and decreased toll-interacting protein in gastric mucosa that persists throughout gastric carcinogenesis. Helicobacter 18(1):22–32

    CAS  PubMed  Google Scholar 

  65. Pimentel-Nunes P, Gonçalves N, Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R Jr, Soares JB, Cardoso E, Henrique R, Moreira-Dias L, Dinis-Ribeiro M, Leite-Moreira AF (2012) Decreased toll-interacting protein and peroxisome proliferator-activated receptor γ are associated with increased expression of Toll-like receptors in colon carcinogenesis. J Clin Pathol 65(4):302–308

    CAS  PubMed  Google Scholar 

  66. Zhang Y, Lee C, Geng S, Li L (2019) Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight 4(2). https://doi.org/10.1172/jci.insight.122939

  67. Begka C, Pattaroni C, Mooser C, Nancey S, McCoy KD, Velin D, Maillard MH (2020) Toll-interacting protein regulates immune cell infiltration and promotes colitis-associated cancer. iScience 23(3):100891

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, Fernandez L, Milhiet PE, Georget V, Urbach S, Lasorsa L, Orsetti B, Boissière-Michot F, Lopez-Crapez E, Theillet C, Roche S, Benistant C (2016) TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun 7:10765–10765

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang F-C, Kuang W-D, Li C, Sun W-W, Qu D, Wang J-H (2015) Toll-interacting protein suppresses HIV-1 long-terminal-repeat-driven gene expression and silences the post-integrational transcription of viral proviral DNA. PloS one 10(4):e0125563–e0125563

    PubMed  PubMed Central  Google Scholar 

  70. Li C, Kuang W-D, Qu D, Wang J-H (2016) Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 475(2):161–168

    CAS  PubMed  Google Scholar 

  71. Visvikis O, Boyer L, Torrino S, Doye A, Lemonnier M, Lorès P, Rolando M, Flatau G, Mettouchi A, Bouvard D, Veiga E, Gacon G, Cossart P, Lemichez E (2011) Escherichia coli producing CNF1 toxin hijacks Tollip to trigger Rac1-dependent cell invasion. Traffic (Copenhagen, Denmark) 12(5):579–590

    CAS  Google Scholar 

  72. Kim BY, Kang J, Kim KS (2005) Invasion processes of pathogenic Escherichia coli. Int J Med Microbiol 295(6-7):463–470

    CAS  PubMed  Google Scholar 

  73. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    PubMed  PubMed Central  Google Scholar 

  74. Yang Y, Klionsky DJ (2020) Autophagy and disease: unanswered questions. Cell Death Differ 27(3):858–871

    PubMed  Google Scholar 

  75. Aridor M, Hannan LA (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic (Copenhagen, Denmark) 1(11):836–851

    CAS  Google Scholar 

  76. Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S (2006) Cell biology of membrane trafficking in human disease. Int Rev Cytol 252:1–69

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yarwood R, Hellicar J, Woodman PG, Lowe M (2020) Membrane trafficking in health and disease. Dis Model Mech 13(4):dmm043448

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Biorender.com was used for the creation of figures in this manuscript.

Funding

This project was supported in part by the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease. GCG is supported by the University of British Columbia Clinician Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

XL, GG, and YZ conceptualized the overall organization. XL performed the literature search and collected the related papers. XL and GG drafted and wrote the manuscript. GG generated the figures. XL, GG, and YZ revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yingze Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoyun Li and Gillian C. Goobie Denotes co-first authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Goobie, G.C. & Zhang, Y. Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. J Mol Med 99, 21–31 (2021). https://doi.org/10.1007/s00109-020-01999-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01999-4

Keywords

Navigation