Skip to main content

Advertisement

Log in

Cell division cycle 7 is a potential therapeutic target in oral squamous cell carcinoma and is regulated by E2F1

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cell division cycle 7 (Cdc7) plays important roles in the regulation of the initiation of DNA replication throughout S phase. Whether inhibition of Cdc7 has a direct antitumour effect in oral squamous cell carcinoma (OSCC) remains unclear. In this study, XL413, a novel Cdc7 inhibitor, markedly inhibited the viability of OSCC cells but not that of non-tumour primary cells. There was a synergistic effect between XL413 and DNA-damaging agents (e.g. cisplatin and 5-fluorouracil) on OSCC in vitro and in vivo. Moreover, XL413 exhibited a notable antitumour effect on OSCC patients with high Cdc7 expression in mini patient-derived xenografts model. The proliferation was significantly inhibited in OSCC cells after Cdc7 silencing. Cdc7 knockdown significantly induced apoptosis in OSCC cell lines. Furthermore, we demonstrated that Cdc7 was overexpressed and transcriptionally regulated by E2F1 in OSCC by using chromatin immunoprecipitation and luciferase assays. Our results reveal that XL413 has an excellent antitumour effect in OSCC. Importantly, it does not inhibit the proliferation of non-tumour cells. These findings suggest that the overexpression of Cdc7 promotes progression in OSCC and that inhibition of Cdc7 is a very promising therapy for OSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chinn SB, Myers JN (2015) Oral cavity carcinoma: current management, controversies, and future directions. J Clin Oncol 33(29):3269–3276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bester A, Roniger M, Oren Y, Im M, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach D, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dobbelstein M, Sorensen CS (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14(6):405–423

    Article  PubMed  CAS  Google Scholar 

  4. Kumagai H, Sato N, Yamada M, Mahony D, Seghezzi W, Lees E, Arai K, Masai H (1999) A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells. Mol Cell Biol 19(7):5083–5095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen L, Luo C, Shen L, Liu Y, Wang Q, Zhang C, Guo R, Zhang Y, Xie Z, Wei N, Wu W, Han J, Feng Y (2017) SRSF1 prevents DNA damage and promotes tumorigenesis through regulation of DBF4B pre-mRNA splicing. Cell Rep 21(12):3406–3413

    Article  PubMed  CAS  Google Scholar 

  6. Yamada M, Masai H, Bartek J (2014) Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 13(12):1859–1866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yamada M, Sato N, Taniyama C, Ohtani K, Arai K, Masai H (2002) A 63-base pair DNA segment containing an Sp1 site but not a canonical E2F site can confer growth-dependent and E2F-mediated transcriptional stimulation of the human ASK gene encoding the regulatory subunit for human Cdc7-related kinase. J Biol Chem 277(31):27668–27681

    Article  PubMed  CAS  Google Scholar 

  8. Bonte D, Lindvall C, Liu H, Dykema K, Furge K, Weinreich M (2008) Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia 10(9):920–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rodriguez-Acebes S, Proctor I, Loddo M, Wollenschlaeger A, Rashid M, Falzon M, Prevost AT, Sainsbury R, Stoeber K, Williams GH (2010) Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers. Am J Pathol 177(4):2034–2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kulkarni AA, Kingsbury SR, Tudzarova S, Hong HK, Loddo M, Rashid M, Rodriguez-Acebes S, Prevost AT, Ledermann JA, Stoeber K, Williams GH (2009) Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clin Cancer Res 15(7):2417–2425

    Article  PubMed  CAS  Google Scholar 

  11. Hou Y, Wang HQ, Ba Y (2012) High expression of cell division cycle 7 protein correlates with poor prognosis in patients with diffuse large B-cell lymphoma. Med Oncol 29(5):3498–3503

    Article  PubMed  CAS  Google Scholar 

  12. Cheng AN, Jiang SS, Fan CC, Lo YK, Kuo CY, Chen CH, Liu YL, Lee CC, Chen WS, Huang TS, Wang TY, Lee AY (2013) Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents. Cancer Lett 337(2):218–225

    Article  PubMed  CAS  Google Scholar 

  13. Montagnoli A, Moll J, Colotta F (2010) Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16(18):4503–4508

    Article  PubMed  CAS  Google Scholar 

  14. Toruner GA, Ulger C, Alkan M, Galante AT, Rinaggio J, Wilk R, Tian B, Soteropoulos P, Hameed MR, Schwalb MN, Dermody JJ (2004) Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. Cancer Genet Cytogenet 154(1):27–35

    Article  PubMed  CAS  Google Scholar 

  15. Yap L, Jenei V, Robinson C, Moutasim K, Benn T, Threadgold S, Lopes V, Wei W, Thomas G, Paterson I (2009) Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28(27):2524–2534

    Article  PubMed  CAS  Google Scholar 

  16. Gao J, Aksoy B, Dogrusoz U, Dresdner G, Gross B, Sumer S, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross B, Sumer S, Aksoy B, Jacobsen A, Byrne C, Heuer M, Larsson E, Antipin Y, Reva B, Goldberg A, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  18. Jin SF, Ma HL, Liu ZL, Fu ST, Zhang CP, He Y (2015) XL413, a cell division cycle 7 kinase inhibitor enhanced the anti-fibrotic effect of pirfenidone on TGF-beta1-stimulated C3H10T1/2 cells via Smad2/4. Exp Cell Res 339(2):289–299

    Article  PubMed  CAS  Google Scholar 

  19. Ma HL, Jin SF, Ju WT, Fu Y, Tu YY, Wang LZ, Jiang L, Zhang ZY, Zhong LP (2017) Stathmin is overexpressed and regulated by mutant p53 in oral squamous cell carcinoma. J Exp Clin Cancer Res 36(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ma H, Jin S, Yang W, Zhou G, Zhao M, Fang S, Zhang Z, Hu J (2018) Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregulating RIG-I in head and neck squamous cell carcinoma. Br J Cancer 118(4):509–521

    Article  PubMed  CAS  Google Scholar 

  21. Bruzzese F, Di Gennaro E, Avallone A, Pepe S, Arra C, Caraglia M, Tagliaferri P, Budillon A (2006) Synergistic antitumor activity of epidermal growth factor receptor tyrosine kinase inhibitor gefitinib and IFN-alpha in head and neck cancer cells in vitro and in vivo. Clin Cancer Res 12(2):617–625

    Article  PubMed  CAS  Google Scholar 

  22. Ma H, Jin S, Yang W, Tian Z, Liu S, Wang Y, Zhou G, Zhao M, Gvetadze S, Zhang Z, Hu J (2017) Interferon-alpha promotes the expression of cancer stem cell markers in oral squamous cell carcinoma. J Cancer 8(12):2384–2393

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanaka C, Uzawa K, Shibahara T, Yokoe H, Noma H, Tanzawa H (2003) Expression of an inhibitor of apoptosis, survivin, in oral carcinogenesis. J Dent Res 82(8):607–611

    Article  PubMed  CAS  Google Scholar 

  24. Zhang G, Chen T, Hargreaves R, Sur C, Williams D (2008) Bioluminescence imaging of hollow fibers in living animals: its application in monitoring molecular pathways. Nat Protoc 3(5):891–899

    Article  PubMed  CAS  Google Scholar 

  25. Koltun ES, Tsuhako AL, Brown DS, Aay N, Arcalas A, Chan V, Du H, Engst S, Ferguson K, Franzini M, Galan A, Holst CR, Huang P, Kane B, Kim MH, Li J, Markby D, Mohan M, Noson K, Plonowski A, Richards SJ, Robertson S, Shaw K, Stott G, Stout TJ, Young J, Yu P, Zaharia CA, Zhang W, Zhou P, Nuss JM, Xu W, Kearney PC (2012) Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett 22(11):3727–3731

    Article  PubMed  CAS  Google Scholar 

  26. Rainey M, Quachthithu H, Gaboriau D, Santocanale C (2017) DNA replication dynamics and cellular responses to ATP competitive CDC7 kinase inhibitors. ACS Chem Biol 12(7):1893–1902

    Article  PubMed  CAS  Google Scholar 

  27. Li W, Zhao XL, Shang SQ, Shen HQ, Chen X (2015) Dual inhibition of Cdc7 and Cdk9 by PHA-767491 suppresses hepatocarcinoma synergistically with 5-fluorouracil. Curr Cancer Drug Targets 15(3):196–204

    Article  PubMed  CAS  Google Scholar 

  28. Erbayraktar Z, Alural B, Erbayraktar RS, Erkan EP (2016) Cell division cycle 7-kinase inhibitor PHA-767491 hydrochloride suppresses glioblastoma growth and invasiveness. Cancer Cell Int 16:88. https://doi.org/10.1186/s12935-016-0364-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V, Tibolla M, Tenca P, Brotherton D, Albanese C, Patton V, Alzani R, Ciavolella A, Sola F, Molinari A, Volpi D, Avanzi N, Fiorentini F, Cattoni M, Healy S, Ballinari D, Pesenti E, Isacchi A, Moll J, Bensimon A, Vanotti E, Santocanale C (2008) A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4(6):357–365

    Article  PubMed  CAS  Google Scholar 

  30. Natoni A, Murillo LS, Kliszczak AE, Catherwood MA, Montagnoli A, Samali A, O’Dwyer M, Santocanale C (2011) Mechanisms of action of a dual Cdc7/Cdk9 kinase inhibitor against quiescent and proliferating CLL cells. Mol Cancer Ther 10(9):1624–1634

    Article  PubMed  CAS  Google Scholar 

  31. Jiang W, McDonald D, Hope TJ, Hunter T (1999) Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18(20):5703–5713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C (2004) Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 64(19):7110–7116

    Article  PubMed  CAS  Google Scholar 

  33. Tudzarova S, Trotter M, Wollenschlaeger A, Mulvey C, Godovac-Zimmermann J, Williams G, Stoeber K (2010) Molecular architecture of the DNA replication origin activation checkpoint. EMBO J 29(19):3381–3394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stebbing J, Paz K, Schwartz G, Wexler L, Maki R, Pollock R, Morris R, Cohen R, Shankar A, Blackman G, Harding V, Vasquez D, Krell J, Zacharoulis S, Ciznadija D, Katz A, Sidransky D (2014) Patient-derived xenografts for individualized care in advanced sarcoma. Cancer 120(13):2006–2015

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gould SE, Junttila MR, de Sauvage FJ (2015) Translational value of mouse models in oncology drug development. Nat Med 21(5):431–439

    Article  PubMed  CAS  Google Scholar 

  36. Pessoa-Brandão L, Sclafani R (2004) CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 167(4):1597–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sasi N, Bhutkar A, Lanning N, MacKeigan J, Weinreich M (2017) DDK promotes tumor chemoresistance and survival via multiple pathways. Neoplasia 19(5):439–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dubrez L (2017) Regulation of E2F1 transcription factor by ubiquitin conjugation. Int J Mol Sci 18(10). https://doi.org/10.3390/ijms18102188

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No.81430012), by research grant BXJ201728 from Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Shufang Jin and Hailong Ma shared first authorship.

Electronic supplementary material

Supplementary Figure S1

XL413 exerts a synergistic antitumour effect with cisplatin and 5-fluorouracil. The cell viability of HN6 and Cal27 cell after treatment with XL413 (10 μM) combined with CDDP (0 to 1000 μM) or 5-Fu (0 to 10,000 μM) was detected by MTT assay (GIF 52 kb)

High-resolution image (TIFF 572 kb)

Supplementary Figure S2

Downregulation of Cdc7 expression by siRNA was confirmed by real-time PCR. (a) The mRNA of Cdc7 was detected after transfection with siRNA (#1, #2, #3) for 24 h in HN6 cells. (b) The mRNA of Cdc7 was detected after transfection with siRNA (#1, #2, #3) for 24 h in Cal27 cells (GIF 633 kb)

High-resolution image (TIFF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ma, H., Yang, W. et al. Cell division cycle 7 is a potential therapeutic target in oral squamous cell carcinoma and is regulated by E2F1. J Mol Med 96, 513–525 (2018). https://doi.org/10.1007/s00109-018-1636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1636-7

Keywords

Navigation